Print this page
14249 pseudo-terminal nomenclature should reflect POSIX
Change-Id: Ib4a3cef899ff4c71b09cb0dc6878863c5e8357bc


  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 
  27 /*
  28  * Zone Console Driver.
  29  *
  30  * This driver, derived from the pts/ptm drivers, is the pseudo console driver
  31  * for system zones.  Its implementation is straightforward.  Each instance
  32  * of the driver represents a global-zone/local-zone pair (this maps in a
  33  * straightforward way to the commonly used terminal notion of "master side"
  34  * and "slave side", and we use that terminology throughout).
  35  *
  36  * Instances of zcons are onlined as children of /pseudo/zconsnex@1/
  37  * by zoneadmd in userland, using the devctl framework; thus the driver
  38  * does not need to maintain any sort of "admin" node.
  39  *
  40  * The driver shuttles I/O from master side to slave side and back.  In a break
  41  * from the pts/ptm semantics, if one side is not open, I/O directed towards
  42  * it will simply be discarded.  This is so that if zoneadmd is not holding
  43  * the master side console open (i.e. it has died somehow), processes in
  44  * the zone do not experience any errors and I/O to the console does not
  45  * hang.
  46  *
  47  * TODO: we may want to revisit the other direction; i.e. we may want
  48  * zoneadmd to be able to detect whether no zone processes are holding the
  49  * console open, an unusual situation.
  50  *
  51  *
  52  *
  53  * MASTER SIDE IOCTLS
  54  *
  55  * The ZC_HOLDSLAVE and ZC_RELEASESLAVE ioctls instruct the master side of the
  56  * console to hold and release a reference to the slave side's vnode.  They are
  57  * meant to be issued by zoneadmd after the console device node is created and
  58  * before it is destroyed so that the slave's STREAMS anchor, ptem, is
  59  * preserved when ttymon starts popping STREAMS modules from within the
  60  * associated zone.  This guarantees that the zone console will always have
  61  * terminal semantics while the zone is running.
  62  *
  63  * Here is the issue: the ptem module is anchored in the zone console
  64  * (slave side) so that processes within the associated non-global zone will
  65  * fail to pop it off, thus ensuring that the slave will retain terminal
  66  * semantics.  When a process attempts to pop the anchor off of a stream, the
  67  * STREAMS subsystem checks whether the calling process' zone is the same as
  68  * that of the process that pushed the anchor onto the stream and cancels the
  69  * pop if they differ.  zoneadmd used to hold an open file descriptor for the
  70  * slave while the associated non-global zone ran, thus ensuring that the
  71  * slave's STREAMS anchor would never be popped from within the non-global zone
  72  * (because zoneadmd runs in the global zone).  However, this file descriptor
  73  * was removed to make zone console management more robust.  sad(7D) is now
  74  * used to automatically set up the slave's STREAMS modules when the zone
  75  * console is freshly opened within the associated non-global zone.  However,
  76  * when a process within the non-global zone freshly opens the zone console, the
  77  * anchor is pushed from within the non-global zone, making it possible for
  78  * processes within the non-global zone (e.g., ttymon) to pop the anchor and
  79  * destroy the zone console's terminal semantics.

  80  *
  81  * One solution is to make the zcons device hold the slave open while the
  82  * associated non-global zone runs so that the STREAMS anchor will always be
  83  * associated with the global zone.  Unfortunately, the slave cannot be opened
  84  * from within the zcons driver because the driver is not reentrant: it has
  85  * an outer STREAMS perimeter.  Therefore, the next best option is for zcons to
  86  * provide an ioctl interface to zoneadmd to manage holding and releasing
  87  * the slave side of the console.  It is sufficient to hold the slave side's
  88  * vnode and bump the associated snode's reference count to preserve the slave's
  89  * STREAMS configuration while the associated zone runs, so that's what the
  90  * ioctls do.
  91  *
  92  *
  93  * ZC_HOLDSLAVE
  94  *
  95  * This ioctl takes a file descriptor as an argument.  It effectively gets a
  96  * reference to the slave side's minor node's vnode and bumps the associated
  97  * snode's reference count.  The vnode reference is stored in the zcons device
  98  * node's soft state.  This ioctl succeeds if the given file descriptor refers
  99  * to the slave side's minor node or if there is already a reference to the
 100  * slave side's minor node's vnode in the device's soft state.

 101  *
 102  *
 103  * ZC_RELEASESLAVE
 104  *
 105  * This ioctl takes a file descriptor as an argument.  It effectively releases
 106  * the vnode reference stored in the zcons device node's soft state (which was
 107  * previously acquired via ZC_HOLDSLAVE) and decrements the reference count of
 108  * the snode associated with the vnode.  This ioctl succeeds if the given file
 109  * descriptor refers to the slave side's minor node or if no reference to the
 110  * slave side's minor node's vnode is stored in the device's soft state.

 111  *
 112  *
 113  * Note that the file descriptor arguments for both ioctls must be cast to
 114  * integers of pointer width.
 115  *
 116  * Here's how the dance between zcons and zoneadmd works:
 117  *
 118  *     Zone boot:
 119  *     1.  While booting the zone, zoneadmd creates an instance of zcons.
 120  *     2.  zoneadmd opens the master and slave sides of the new zone console
 121  *         and issues the ZC_HOLDSLAVE ioctl on the master side, passing its
 122  *         file descriptor for the slave side as the ioctl argument.
 123  *     3.  zcons holds the slave side's vnode, bumps the snode's reference

 124  *         count, and stores a pointer to the vnode in the device's soft
 125  *         state.
 126  *     4.  zoneadmd closes the master and slave sides and continues to boot
 127  *         the zone.
 128  *
 129  *     Zone halt:
 130  *     1.  While halting the zone, zoneadmd opens the master and slave sides
 131  *         of the zone's console and issues the ZC_RELEASESLAVE ioctl on the
 132  *         master side, passing its file descriptor for the slave side as the
 133  *         ioctl argument.
 134  *     2.  zcons decrements the slave side's snode's reference count, releases
 135  *         the slave's vnode, and eliminates its reference to the vnode in the
 136  *         device's soft state.
 137  *     3.  zoneadmd closes the master and slave sides.
 138  *     4.  zoneadmd destroys the zcons device and continues to halt the zone.
 139  *
 140  * It is necessary for zoneadmd to hold the slave open while issuing
 141  * ZC_RELEASESLAVE because zcons might otherwise release the last reference to
 142  * the slave's vnode.  If it does, then specfs will panic because it will expect
 143  * that the STREAMS configuration for the vnode was destroyed, which VN_RELE
 144  * doesn't do.  Forcing zoneadmd to hold the slave open guarantees that zcons
 145  * won't release the vnode's last reference.  zoneadmd will properly destroy the
 146  * vnode and the snode when it closes the file descriptor.
 147  *
 148  * Technically, any process that can access the master side can issue these
 149  * ioctls, but they should be treated as private interfaces for zoneadmd.
 150  */
 151 
 152 #include <sys/types.h>
 153 #include <sys/cmn_err.h>
 154 #include <sys/conf.h>
 155 #include <sys/cred.h>
 156 #include <sys/ddi.h>
 157 #include <sys/debug.h>
 158 #include <sys/devops.h>
 159 #include <sys/errno.h>
 160 #include <sys/file.h>
 161 #include <sys/kstr.h>
 162 #include <sys/modctl.h>
 163 #include <sys/param.h>
 164 #include <sys/stat.h>
 165 #include <sys/stream.h>
 166 #include <sys/stropts.h>
 167 #include <sys/strsun.h>
 168 #include <sys/sunddi.h>
 169 #include <sys/sysmacros.h>
 170 #include <sys/systm.h>
 171 #include <sys/types.h>
 172 #include <sys/zcons.h>
 173 #include <sys/vnode.h>
 174 #include <sys/fs/snode.h>
 175 #include <sys/zone.h>
 176 
 177 static int zc_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
 178 static int zc_attach(dev_info_t *, ddi_attach_cmd_t);
 179 static int zc_detach(dev_info_t *, ddi_detach_cmd_t);
 180 
 181 static int zc_open(queue_t *, dev_t *, int, int, cred_t *);
 182 static int zc_close(queue_t *, int, cred_t *);
 183 static int zc_wput(queue_t *, mblk_t *);
 184 static int zc_rsrv(queue_t *);
 185 static int zc_wsrv(queue_t *);
 186 
 187 /*
 188  * The instance number is encoded in the dev_t in the minor number; the lowest
 189  * bit of the minor number is used to track the master vs. slave side of the
 190  * virtual console.  The rest of the bits in the minor number are the instance.

 191  */
 192 #define ZC_MASTER_MINOR         0
 193 #define ZC_SLAVE_MINOR          1
 194 
 195 #define ZC_INSTANCE(x)          (getminor((x)) >> 1)
 196 #define ZC_NODE(x)              (getminor((x)) & 0x01)
 197 
 198 /*
 199  * This macro converts a zc_state_t pointer to the associated slave minor node's
 200  * dev_t.
 201  */
 202 #define ZC_STATE_TO_SLAVEDEV(x) (makedevice(ddi_driver_major((x)->zc_devinfo), \
 203         (minor_t)(ddi_get_instance((x)->zc_devinfo) << 1 | ZC_SLAVE_MINOR)))
 204 
 205 int zcons_debug = 0;
 206 #define DBG(a)   if (zcons_debug) cmn_err(CE_NOTE, a)
 207 #define DBG1(a, b)   if (zcons_debug) cmn_err(CE_NOTE, a, b)
 208 
 209 
 210 /*
 211  * Zone Console Pseudo Terminal Module: stream data structure definitions
 212  */
 213 static struct module_info zc_info = {
 214         31337,  /* c0z we r hAx0rs */
 215         "zcons",
 216         0,
 217         INFPSZ,
 218         _TTY_BUFSIZ,
 219         128
 220 };
 221 
 222 static struct qinit zc_rinit = {
 223         NULL,


 255     zc_getinfo, ZC_CONF_FLAG, &zc_tab_info, ddi_quiesce_not_needed);
 256 
 257 /*
 258  * Module linkage information for the kernel.
 259  */
 260 
 261 static struct modldrv modldrv = {
 262         &mod_driverops,             /* Type of module (this is a pseudo driver) */
 263         "Zone console driver",  /* description of module */
 264         &zc_ops                     /* driver ops */
 265 };
 266 
 267 static struct modlinkage modlinkage = {
 268         MODREV_1,
 269         &modldrv,
 270         NULL
 271 };
 272 
 273 typedef struct zc_state {
 274         dev_info_t *zc_devinfo;
 275         queue_t *zc_master_rdq;
 276         queue_t *zc_slave_rdq;
 277         vnode_t *zc_slave_vnode;
 278         int zc_state;
 279 } zc_state_t;
 280 
 281 #define ZC_STATE_MOPEN  0x01
 282 #define ZC_STATE_SOPEN  0x02
 283 
 284 static void *zc_soft_state;
 285 
 286 /*
 287  * List of STREAMS modules that should be pushed onto every slave instance.
 288  */
 289 static char *zcons_mods[] = {
 290         "ptem",
 291         "ldterm",
 292         "ttcompat",
 293         NULL
 294 };
 295 
 296 int
 297 _init(void)
 298 {
 299         int err;
 300 
 301         if ((err = ddi_soft_state_init(&zc_soft_state,
 302             sizeof (zc_state_t), 0)) != 0) {
 303                 return (err);
 304         }
 305 
 306         if ((err = mod_install(&modlinkage)) != 0)
 307                 ddi_soft_state_fini(zc_soft_state);


 326 int
 327 _info(struct modinfo *modinfop)
 328 {
 329         return (mod_info(&modlinkage, modinfop));
 330 }
 331 
 332 static int
 333 zc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
 334 {
 335         zc_state_t *zcs;
 336         int instance;
 337 
 338         if (cmd != DDI_ATTACH)
 339                 return (DDI_FAILURE);
 340 
 341         instance = ddi_get_instance(dip);
 342         if (ddi_soft_state_zalloc(zc_soft_state, instance) != DDI_SUCCESS)
 343                 return (DDI_FAILURE);
 344 
 345         /*
 346          * Create the master and slave minor nodes.
 347          */
 348         if ((ddi_create_minor_node(dip, ZCONS_SLAVE_NAME, S_IFCHR,
 349             instance << 1 | ZC_SLAVE_MINOR, DDI_PSEUDO, 0) == DDI_FAILURE) ||
 350             (ddi_create_minor_node(dip, ZCONS_MASTER_NAME, S_IFCHR,
 351             instance << 1 | ZC_MASTER_MINOR, DDI_PSEUDO, 0) == DDI_FAILURE)) {
 352                 ddi_remove_minor_node(dip, NULL);
 353                 ddi_soft_state_free(zc_soft_state, instance);
 354                 return (DDI_FAILURE);
 355         }
 356 
 357         VERIFY((zcs = ddi_get_soft_state(zc_soft_state, instance)) != NULL);
 358         zcs->zc_devinfo = dip;
 359         return (DDI_SUCCESS);
 360 }
 361 
 362 static int
 363 zc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
 364 {
 365         zc_state_t *zcs;
 366         int instance;
 367 
 368         if (cmd != DDI_DETACH)
 369                 return (DDI_FAILURE);
 370 
 371         instance = ddi_get_instance(dip);
 372         if ((zcs = ddi_get_soft_state(zc_soft_state, instance)) == NULL)
 373                 return (DDI_FAILURE);
 374 
 375         if ((zcs->zc_state & ZC_STATE_MOPEN) ||
 376             (zcs->zc_state & ZC_STATE_SOPEN)) {
 377                 DBG1("zc_detach: device (dip=%p) still open\n", (void *)dip);
 378                 return (DDI_FAILURE);
 379         }
 380 
 381         ddi_remove_minor_node(dip, NULL);
 382         ddi_soft_state_free(zc_soft_state, instance);
 383 
 384         return (DDI_SUCCESS);
 385 }
 386 
 387 /*
 388  * zc_getinfo()
 389  *      getinfo(9e) entrypoint.
 390  */
 391 /*ARGSUSED*/
 392 static int
 393 zc_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
 394 {
 395         zc_state_t *zcs;
 396         int instance = ZC_INSTANCE((dev_t)arg);
 397 
 398         switch (infocmd) {
 399         case DDI_INFO_DEVT2DEVINFO:
 400                 if ((zcs = ddi_get_soft_state(zc_soft_state, instance)) == NULL)
 401                         return (DDI_FAILURE);
 402                 *result = zcs->zc_devinfo;
 403                 return (DDI_SUCCESS);
 404         case DDI_INFO_DEVT2INSTANCE:
 405                 *result = (void *)(uintptr_t)instance;
 406                 return (DDI_SUCCESS);
 407         }
 408         return (DDI_FAILURE);
 409 }
 410 
 411 /*
 412  * Return the equivalent queue from the other side of the relationship.
 413  * e.g.: given the slave's write queue, return the master's write queue.
 414  */
 415 static queue_t *
 416 zc_switch(queue_t *qp)
 417 {
 418         zc_state_t *zcs = qp->q_ptr;
 419         ASSERT(zcs != NULL);
 420 
 421         if (qp == zcs->zc_master_rdq)
 422                 return (zcs->zc_slave_rdq);
 423         else if (OTHERQ(qp) == zcs->zc_master_rdq && zcs->zc_slave_rdq != NULL)
 424                 return (OTHERQ(zcs->zc_slave_rdq));
 425         else if (qp == zcs->zc_slave_rdq)
 426                 return (zcs->zc_master_rdq);
 427         else if (OTHERQ(qp) == zcs->zc_slave_rdq && zcs->zc_master_rdq != NULL)
 428                 return (OTHERQ(zcs->zc_master_rdq));
 429         else


 430                 return (NULL);

 431 }
 432 
 433 /*
 434  * For debugging and outputting messages.  Returns the name of the side of
 435  * the relationship associated with this queue.
 436  */
 437 static const char *
 438 zc_side(queue_t *qp)
 439 {
 440         zc_state_t *zcs = qp->q_ptr;
 441         ASSERT(zcs != NULL);
 442 
 443         if (qp == zcs->zc_master_rdq ||
 444             OTHERQ(qp) == zcs->zc_master_rdq) {
 445                 return ("master");
 446         }
 447         ASSERT(qp == zcs->zc_slave_rdq || OTHERQ(qp) == zcs->zc_slave_rdq);
 448         return ("slave");
 449 }
 450 
 451 /*ARGSUSED*/
 452 static int
 453 zc_master_open(zc_state_t *zcs,
 454     queue_t     *rqp,   /* pointer to the read side queue */
 455     dev_t       *devp,  /* pointer to stream tail's dev */
 456     int         oflag,  /* the user open(2) supplied flags */
 457     int         sflag,  /* open state flag */
 458     cred_t      *credp) /* credentials */
 459 {
 460         mblk_t *mop;
 461         struct stroptions *sop;
 462 
 463         /*
 464          * Enforce exclusivity on the master side; the only consumer should
 465          * be the zoneadmd for the zone.
 466          */
 467         if ((zcs->zc_state & ZC_STATE_MOPEN) != 0)
 468                 return (EBUSY);
 469 
 470         if ((mop = allocb(sizeof (struct stroptions), BPRI_MED)) == NULL) {
 471                 DBG("zc_master_open(): mop allocation failed\n");
 472                 return (ENOMEM);
 473         }
 474 
 475         zcs->zc_state |= ZC_STATE_MOPEN;
 476 
 477         /*
 478          * q_ptr stores driver private data; stash the soft state data on both
 479          * read and write sides of the queue.
 480          */
 481         WR(rqp)->q_ptr = rqp->q_ptr = zcs;
 482         qprocson(rqp);
 483 
 484         /*
 485          * Following qprocson(), the master side is fully plumbed into the
 486          * STREAM and may send/receive messages.  Setting zcs->zc_master_rdq
 487          * will allow the slave to send messages to us (the master).
 488          * This cannot occur before qprocson() because the master is not
 489          * ready to process them until that point.
 490          */
 491         zcs->zc_master_rdq = rqp;
 492 
 493         /*
 494          * set up hi/lo water marks on stream head read queue and add
 495          * controlling tty as needed.
 496          */
 497         mop->b_datap->db_type = M_SETOPTS;
 498         mop->b_wptr += sizeof (struct stroptions);
 499         sop = (struct stroptions *)(void *)mop->b_rptr;
 500         if (oflag & FNOCTTY)
 501                 sop->so_flags = SO_HIWAT | SO_LOWAT;
 502         else
 503                 sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY;
 504         sop->so_hiwat = _TTY_BUFSIZ;
 505         sop->so_lowat = 256;
 506         putnext(rqp, mop);
 507 
 508         return (0);
 509 }
 510 
 511 /*ARGSUSED*/
 512 static int
 513 zc_slave_open(zc_state_t *zcs,
 514     queue_t     *rqp,   /* pointer to the read side queue */
 515     dev_t       *devp,  /* pointer to stream tail's dev */
 516     int         oflag,  /* the user open(2) supplied flags */
 517     int         sflag,  /* open state flag */
 518     cred_t      *credp) /* credentials */
 519 {
 520         mblk_t *mop;
 521         struct stroptions *sop;
 522         major_t major;
 523         minor_t minor;
 524         minor_t lastminor;
 525         uint_t anchorindex;
 526 
 527         /*
 528          * The slave side can be opened as many times as needed.
 529          */
 530         if ((zcs->zc_state & ZC_STATE_SOPEN) != 0) {
 531                 ASSERT((rqp != NULL) && (WR(rqp)->q_ptr == zcs));
 532                 return (0);
 533         }
 534 
 535         /*
 536          * Set up sad(7D) so that the necessary STREAMS modules will be in
 537          * place.  A wrinkle is that 'ptem' must be anchored
 538          * in place (see streamio(7i)) because we always want the console to
 539          * have terminal semantics.
 540          */
 541         minor = ddi_get_instance(zcs->zc_devinfo) << 1 | ZC_SLAVE_MINOR;
 542         major = ddi_driver_major(zcs->zc_devinfo);
 543         lastminor = 0;
 544         anchorindex = 1;
 545         if (kstr_autopush(SET_AUTOPUSH, &major, &minor, &lastminor,
 546             &anchorindex, zcons_mods) != 0) {
 547                 DBG("zc_slave_open(): kstr_autopush() failed\n");
 548                 return (EIO);
 549         }
 550 
 551         if ((mop = allocb(sizeof (struct stroptions), BPRI_MED)) == NULL) {
 552                 DBG("zc_slave_open(): mop allocation failed\n");
 553                 return (ENOMEM);
 554         }
 555 
 556         zcs->zc_state |= ZC_STATE_SOPEN;
 557 
 558         /*
 559          * q_ptr stores driver private data; stash the soft state data on both
 560          * read and write sides of the queue.
 561          */
 562         WR(rqp)->q_ptr = rqp->q_ptr = zcs;
 563 
 564         qprocson(rqp);
 565 
 566         /*
 567          * Must follow qprocson(), since we aren't ready to process until then.
 568          */
 569         zcs->zc_slave_rdq = rqp;
 570 
 571         /*
 572          * set up hi/lo water marks on stream head read queue and add
 573          * controlling tty as needed.
 574          */
 575         mop->b_datap->db_type = M_SETOPTS;
 576         mop->b_wptr += sizeof (struct stroptions);
 577         sop = (struct stroptions *)(void *)mop->b_rptr;
 578         sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY;
 579         sop->so_hiwat = _TTY_BUFSIZ;
 580         sop->so_lowat = 256;
 581         putnext(rqp, mop);
 582 
 583         return (0);
 584 }
 585 
 586 /*
 587  * open(9e) entrypoint; checks sflag, and rejects anything unordinary.
 588  */
 589 static int
 590 zc_open(queue_t *rqp,   /* pointer to the read side queue */
 591     dev_t   *devp,      /* pointer to stream tail's dev */
 592     int oflag,          /* the user open(2) supplied flags */
 593     int sflag,          /* open state flag */
 594     cred_t  *credp)     /* credentials */
 595 {
 596         int instance = ZC_INSTANCE(*devp);
 597         int ret;
 598         zc_state_t *zcs;
 599 
 600         if (sflag != 0)
 601                 return (EINVAL);
 602 
 603         if ((zcs = ddi_get_soft_state(zc_soft_state, instance)) == NULL)
 604                 return (ENXIO);
 605 
 606         switch (ZC_NODE(*devp)) {
 607         case ZC_MASTER_MINOR:
 608                 ret = zc_master_open(zcs, rqp, devp, oflag, sflag, credp);
 609                 break;
 610         case ZC_SLAVE_MINOR:
 611                 ret = zc_slave_open(zcs, rqp, devp, oflag, sflag, credp);
 612                 break;
 613         default:
 614                 ret = ENXIO;
 615                 break;
 616         }
 617 
 618         return (ret);
 619 }
 620 
 621 /*
 622  * close(9e) entrypoint.
 623  */
 624 /*ARGSUSED1*/
 625 static int
 626 zc_close(queue_t *rqp, int flag, cred_t *credp)
 627 {
 628         queue_t *wqp;
 629         mblk_t  *bp;
 630         zc_state_t *zcs;
 631         major_t major;
 632         minor_t minor;
 633 
 634         zcs = (zc_state_t *)rqp->q_ptr;
 635 
 636         if (rqp == zcs->zc_master_rdq) {
 637                 DBG("Closing master side");
 638 
 639                 zcs->zc_master_rdq = NULL;
 640                 zcs->zc_state &= ~ZC_STATE_MOPEN;
 641 
 642                 /*
 643                  * qenable slave side write queue so that it can flush
 644                  * its messages as master's read queue is going away
 645                  */
 646                 if (zcs->zc_slave_rdq != NULL) {
 647                         qenable(WR(zcs->zc_slave_rdq));
 648                 }
 649 
 650                 qprocsoff(rqp);
 651                 WR(rqp)->q_ptr = rqp->q_ptr = NULL;
 652 
 653         } else if (rqp == zcs->zc_slave_rdq) {
 654 
 655                 DBG("Closing slave side");
 656                 zcs->zc_state &= ~ZC_STATE_SOPEN;
 657                 zcs->zc_slave_rdq = NULL;
 658 
 659                 wqp = WR(rqp);
 660                 while ((bp = getq(wqp)) != NULL) {
 661                         if (zcs->zc_master_rdq != NULL)
 662                                 putnext(zcs->zc_master_rdq, bp);
 663                         else if (bp->b_datap->db_type == M_IOCTL)
 664                                 miocnak(wqp, bp, 0, 0);
 665                         else
 666                                 freemsg(bp);
 667                 }
 668 
 669                 /*
 670                  * Qenable master side write queue so that it can flush its
 671                  * messages as slaves's read queue is going away.
 672                  */
 673                 if (zcs->zc_master_rdq != NULL)
 674                         qenable(WR(zcs->zc_master_rdq));
 675 
 676                 qprocsoff(rqp);
 677                 WR(rqp)->q_ptr = rqp->q_ptr = NULL;
 678 
 679                 /*
 680                  * Clear the sad configuration so that reopening doesn't fail
 681                  * to set up sad configuration.
 682                  */
 683                 major = ddi_driver_major(zcs->zc_devinfo);
 684                 minor = ddi_get_instance(zcs->zc_devinfo) << 1 | ZC_SLAVE_MINOR;

 685                 (void) kstr_autopush(CLR_AUTOPUSH, &major, &minor, NULL, NULL,
 686                     NULL);
 687         }
 688 
 689         return (0);
 690 }
 691 
 692 static void
 693 handle_mflush(queue_t *qp, mblk_t *mp)
 694 {
 695         mblk_t *nmp;
 696         DBG1("M_FLUSH on %s side", zc_side(qp));
 697 
 698         if (*mp->b_rptr & FLUSHW) {
 699                 DBG1("M_FLUSH, FLUSHW, %s side", zc_side(qp));
 700                 flushq(qp, FLUSHDATA);
 701                 *mp->b_rptr &= ~FLUSHW;
 702                 if ((*mp->b_rptr & FLUSHR) == 0) {
 703                         /*
 704                          * FLUSHW only. Change to FLUSHR and putnext other side,


 712                 } else if ((zc_switch(RD(qp)) != NULL) &&
 713                     (nmp = copyb(mp)) != NULL) {
 714                         /*
 715                          * It is a FLUSHRW; we copy the mblk and send
 716                          * it to the other side, since we still need to use
 717                          * the mblk in FLUSHR processing, below.
 718                          */
 719                         putnext(zc_switch(RD(qp)), nmp);
 720                 }
 721         }
 722 
 723         if (*mp->b_rptr & FLUSHR) {
 724                 DBG("qreply(qp) turning FLUSHR around\n");
 725                 qreply(qp, mp);
 726                 return;
 727         }
 728         freemsg(mp);
 729 }
 730 
 731 /*
 732  * wput(9E) is symmetric for master and slave sides, so this handles both
 733  * without splitting the codepath.  (The only exception to this is the
 734  * processing of zcons ioctls, which is restricted to the master side.)
 735  *
 736  * zc_wput() looks at the other side; if there is no process holding that
 737  * side open, it frees the message.  This prevents processes from hanging
 738  * if no one is holding open the console.  Otherwise, it putnext's high
 739  * priority messages, putnext's normal messages if possible, and otherwise
 740  * enqueues the messages; in the case that something is enqueued, wsrv(9E)
 741  * will take care of eventually shuttling I/O to the other side.
 742  */
 743 static int
 744 zc_wput(queue_t *qp, mblk_t *mp)
 745 {
 746         unsigned char type = mp->b_datap->db_type;
 747         zc_state_t *zcs;
 748         struct iocblk *iocbp;
 749         file_t *slave_filep;
 750         struct snode *slave_snodep;
 751         int slave_fd;
 752 
 753         ASSERT(qp->q_ptr);
 754 
 755         DBG1("entering zc_wput, %s side", zc_side(qp));
 756 
 757         /*
 758          * Process zcons ioctl messages if qp is the master console's write
 759          * queue.
 760          */
 761         zcs = (zc_state_t *)qp->q_ptr;
 762         if (zcs->zc_master_rdq != NULL && qp == WR(zcs->zc_master_rdq) &&
 763             type == M_IOCTL) {
 764                 iocbp = (struct iocblk *)(void *)mp->b_rptr;
 765                 switch (iocbp->ioc_cmd) {
 766                 case ZC_HOLDSLAVE:
 767                         /*
 768                          * Hold the slave's vnode and increment the refcount
 769                          * of the snode.  If the vnode is already held, then
 770                          * indicate success.
 771                          */
 772                         if (iocbp->ioc_count != TRANSPARENT) {
 773                                 miocack(qp, mp, 0, EINVAL);
 774                                 return (0);
 775                         }
 776                         if (zcs->zc_slave_vnode != NULL) {
 777                                 miocack(qp, mp, 0, 0);
 778                                 return (0);
 779                         }
 780 
 781                         /*
 782                          * The process that passed the ioctl must be running in
 783                          * the global zone.
 784                          */
 785                         if (curzone != global_zone) {
 786                                 miocack(qp, mp, 0, EINVAL);
 787                                 return (0);
 788                         }
 789 
 790                         /*
 791                          * The calling process must pass a file descriptor for
 792                          * the slave device.
 793                          */
 794                         slave_fd =
 795                             (int)(intptr_t)*(caddr_t *)(void *)mp->b_cont->
 796                             b_rptr;
 797                         slave_filep = getf(slave_fd);
 798                         if (slave_filep == NULL) {
 799                                 miocack(qp, mp, 0, EINVAL);
 800                                 return (0);
 801                         }
 802                         if (ZC_STATE_TO_SLAVEDEV(zcs) !=
 803                             slave_filep->f_vnode->v_rdev) {
 804                                 releasef(slave_fd);
 805                                 miocack(qp, mp, 0, EINVAL);
 806                                 return (0);
 807                         }
 808 
 809                         /*
 810                          * Get a reference to the slave's vnode.  Also bump the
 811                          * reference count on the associated snode.
 812                          */
 813                         ASSERT(vn_matchops(slave_filep->f_vnode,
 814                             spec_getvnodeops()));
 815                         zcs->zc_slave_vnode = slave_filep->f_vnode;
 816                         VN_HOLD(zcs->zc_slave_vnode);
 817                         slave_snodep = VTOCS(zcs->zc_slave_vnode);
 818                         mutex_enter(&slave_snodep->s_lock);
 819                         ++slave_snodep->s_count;
 820                         mutex_exit(&slave_snodep->s_lock);
 821                         releasef(slave_fd);
 822                         miocack(qp, mp, 0, 0);
 823                         return (0);
 824                 case ZC_RELEASESLAVE:
 825                         /*
 826                          * Release the master's handle on the slave's vnode.
 827                          * If there isn't a handle for the vnode, then indicate
 828                          * success.
 829                          */
 830                         if (iocbp->ioc_count != TRANSPARENT) {
 831                                 miocack(qp, mp, 0, EINVAL);
 832                                 return (0);
 833                         }
 834                         if (zcs->zc_slave_vnode == NULL) {
 835                                 miocack(qp, mp, 0, 0);
 836                                 return (0);
 837                         }
 838 
 839                         /*
 840                          * The process that passed the ioctl must be running in
 841                          * the global zone.
 842                          */
 843                         if (curzone != global_zone) {
 844                                 miocack(qp, mp, 0, EINVAL);
 845                                 return (0);
 846                         }
 847 
 848                         /*
 849                          * The process that passed the ioctl must have provided
 850                          * a file descriptor for the slave device.  Make sure
 851                          * this is correct.
 852                          */
 853                         slave_fd =
 854                             (int)(intptr_t)*(caddr_t *)(void *)mp->b_cont->
 855                             b_rptr;
 856                         slave_filep = getf(slave_fd);
 857                         if (slave_filep == NULL) {
 858                                 miocack(qp, mp, 0, EINVAL);
 859                                 return (0);
 860                         }
 861                         if (zcs->zc_slave_vnode->v_rdev !=
 862                             slave_filep->f_vnode->v_rdev) {
 863                                 releasef(slave_fd);
 864                                 miocack(qp, mp, 0, EINVAL);
 865                                 return (0);
 866                         }
 867 
 868                         /*
 869                          * Decrement the snode's reference count and release the
 870                          * vnode.
 871                          */
 872                         ASSERT(vn_matchops(slave_filep->f_vnode,
 873                             spec_getvnodeops()));
 874                         slave_snodep = VTOCS(zcs->zc_slave_vnode);
 875                         mutex_enter(&slave_snodep->s_lock);
 876                         --slave_snodep->s_count;
 877                         mutex_exit(&slave_snodep->s_lock);
 878                         VN_RELE(zcs->zc_slave_vnode);
 879                         zcs->zc_slave_vnode = NULL;
 880                         releasef(slave_fd);
 881                         miocack(qp, mp, 0, 0);
 882                         return (0);
 883                 default:
 884                         break;
 885                 }
 886         }
 887 
 888         if (zc_switch(RD(qp)) == NULL) {
 889                 DBG1("wput to %s side (no one listening)", zc_side(qp));
 890                 switch (type) {
 891                 case M_FLUSH:
 892                         handle_mflush(qp, mp);
 893                         break;
 894                 case M_IOCTL:
 895                         miocnak(qp, mp, 0, 0);
 896                         break;
 897                 default:
 898                         freemsg(mp);
 899                         break;
 900                 }


 922                 DBG1("done (hipri) wput, %s side", zc_side(qp));
 923                 return (0);
 924         }
 925 
 926         /*
 927          * Only putnext if there isn't already something in the queue.
 928          * otherwise things would wind up out of order.
 929          */
 930         if (qp->q_first == NULL && bcanputnext(RD(zc_switch(qp)), mp->b_band)) {
 931                 DBG("wput: putting message to other side\n");
 932                 putnext(RD(zc_switch(qp)), mp);
 933         } else {
 934                 DBG("wput: putting msg onto queue\n");
 935                 (void) putq(qp, mp);
 936         }
 937         DBG1("done wput, %s side", zc_side(qp));
 938         return (0);
 939 }
 940 
 941 /*
 942  * rsrv(9E) is symmetric for master and slave, so zc_rsrv() handles both
 943  * without splitting up the codepath.
 944  *
 945  * Enable the write side of the partner.  This triggers the partner to send
 946  * messages queued on its write side to this queue's read side.
 947  */
 948 static int
 949 zc_rsrv(queue_t *qp)
 950 {
 951         zc_state_t *zcs;
 952         zcs = (zc_state_t *)qp->q_ptr;
 953 
 954         /*
 955          * Care must be taken here, as either of the master or slave side
 956          * qptr could be NULL.
 957          */
 958         ASSERT(qp == zcs->zc_master_rdq || qp == zcs->zc_slave_rdq);
 959         if (zc_switch(qp) == NULL) {
 960                 DBG("zc_rsrv: other side isn't listening\n");
 961                 return (0);
 962         }
 963         qenable(WR(zc_switch(qp)));
 964         return (0);
 965 }
 966 
 967 /*
 968  * This routine is symmetric for master and slave, so it handles both without
 969  * splitting up the codepath.
 970  *
 971  * If there are messages on this queue that can be sent to the other, send
 972  * them via putnext(). Else, if queued messages cannot be sent, leave them
 973  * on this queue.
 974  */
 975 static int
 976 zc_wsrv(queue_t *qp)
 977 {
 978         mblk_t *mp;
 979 
 980         DBG1("zc_wsrv master (%s) side", zc_side(qp));
 981 
 982         /*
 983          * Partner has no read queue, so take the data, and throw it away.
 984          */
 985         if (zc_switch(RD(qp)) == NULL) {
 986                 DBG("zc_wsrv: other side isn't listening");
 987                 while ((mp = getq(qp)) != NULL) {
 988                         if (mp->b_datap->db_type == M_IOCTL)
 989                                 miocnak(qp, mp, 0, 0);
 990                         else
 991                                 freemsg(mp);
 992                 }
 993                 flushq(qp, FLUSHALL);
 994                 return (0);
 995         }
 996 
 997         /*
 998          * while there are messages on this write queue...
 999          */
1000         while ((mp = getq(qp)) != NULL) {


  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 
  27 /*
  28  * Zone Console Driver.
  29  *
  30  * This driver, derived from the pts/ptm drivers, is the pseudo console driver
  31  * for system zones.  Its implementation is straightforward.  Each instance
  32  * of the driver represents a global-zone/local-zone pair (this maps in a
  33  * straightforward way to the commonly used terminal notion of "manager side"
  34  * and "subsidiary side", and we use that terminology throughout).
  35  *
  36  * Instances of zcons are onlined as children of /pseudo/zconsnex@1/
  37  * by zoneadmd in userland, using the devctl framework; thus the driver
  38  * does not need to maintain any sort of "admin" node.
  39  *
  40  * The driver shuttles I/O from manager side to subsidiary side and back.  In a
  41  * break from the pts/ptm semantics, if one side is not open, I/O directed
  42  * towards it will simply be discarded.  This is so that if zoneadmd is not
  43  * holding the manager side console open (i.e. it has died somehow), processes
  44  * in the zone do not experience any errors and I/O to the console does not
  45  * hang.
  46  *
  47  * TODO: we may want to revisit the other direction; i.e. we may want
  48  * zoneadmd to be able to detect whether no zone processes are holding the
  49  * console open, an unusual situation.
  50  *
  51  *
  52  *
  53  * MANAGER SIDE IOCTLS
  54  *
  55  * The ZC_HOLDSUBSID and ZC_RELEASESUBSID ioctls instruct the manager side of
  56  * the console to hold and release a reference to the subsidiary side's vnode.
  57  * They are meant to be issued by zoneadmd after the console device node is
  58  * created and before it is destroyed so that the subsidiary's STREAMS anchor,
  59  * ptem, is preserved when ttymon starts popping STREAMS modules from within
  60  * the associated zone.  This guarantees that the zone console will always have
  61  * terminal semantics while the zone is running.
  62  *
  63  * Here is the issue: the ptem module is anchored in the zone console
  64  * (subsidiary side) so that processes within the associated non-global zone
  65  * will fail to pop it off, thus ensuring that the subsidiary will retain
  66  * terminal semantics.  When a process attempts to pop the anchor off of a
  67  * stream, the STREAMS subsystem checks whether the calling process' zone is
  68  * the same as that of the process that pushed the anchor onto the stream and
  69  * cancels the pop if they differ.  zoneadmd used to hold an open file
  70  * descriptor for the subsidiary while the associated non-global zone ran, thus
  71  * ensuring that the subsidiary's STREAMS anchor would never be popped from
  72  * within the non-global zone (because zoneadmd runs in the global zone).
  73  * However, this file descriptor was removed to make zone console management
  74  * more robust.  sad(7D) is now used to automatically set up the subsidiary's
  75  * STREAMS modules when the zone console is freshly opened within the
  76  * associated non-global zone.  However, when a process within the non-global
  77  * zone freshly opens the zone console, the anchor is pushed from within the
  78  * non-global zone, making it possible for processes within the non-global zone
  79  * (e.g., ttymon) to pop the anchor and destroy the zone console's terminal
  80  * semantics.
  81  *
  82  * One solution is to make the zcons device hold the subsidiary open while the
  83  * associated non-global zone runs so that the STREAMS anchor will always be
  84  * associated with the global zone.  Unfortunately, the subsidiary cannot be
  85  * opened from within the zcons driver because the driver is not reentrant: it
  86  * has an outer STREAMS perimeter.  Therefore, the next best option is for
  87  * zcons to provide an ioctl interface to zoneadmd to manage holding and
  88  * releasing the subsidiary side of the console.  It is sufficient to hold the
  89  * subsidiary side's vnode and bump the associated snode's reference count to
  90  * preserve the subsidiary's STREAMS configuration while the associated zone
  91  * runs, so that's what the ioctls do.
  92  *
  93  *
  94  * ZC_HOLDSUBSID
  95  *
  96  * This ioctl takes a file descriptor as an argument.  It effectively gets a
  97  * reference to the subsidiary side's minor node's vnode and bumps the
  98  * associated snode's reference count.  The vnode reference is stored in the
  99  * zcons device node's soft state.  This ioctl succeeds if the given file
 100  * descriptor refers to the subsidiary side's minor node or if there is already
 101  * a reference to the subsidiary side's minor node's vnode in the device's soft
 102  * state.
 103  *
 104  *
 105  * ZC_RELEASESUBSID
 106  *
 107  * This ioctl takes a file descriptor as an argument.  It effectively releases
 108  * the vnode reference stored in the zcons device node's soft state (which was
 109  * previously acquired via ZC_HOLDSUBSID) and decrements the reference count of
 110  * the snode associated with the vnode.  This ioctl succeeds if the given file
 111  * descriptor refers to the subsidiary side's minor node or if no reference to
 112  * the subsidiary side's minor node's vnode is stored in the device's soft
 113  * state.
 114  *
 115  *
 116  * Note that the file descriptor arguments for both ioctls must be cast to
 117  * integers of pointer width.
 118  *
 119  * Here's how the dance between zcons and zoneadmd works:
 120  *
 121  *     Zone boot:
 122  *     1.  While booting the zone, zoneadmd creates an instance of zcons.
 123  *     2.  zoneadmd opens the manager and subsidiary sides of the new zone
 124  *         console and issues the ZC_HOLDSUBSID ioctl on the manager side,
 125  *         passing its file descriptor for the subsidiary side as the ioctl
 126  *         argument.
 127  *     3.  zcons holds the subsidiary side's vnode, bumps the snode's reference
 128  *         count, and stores a pointer to the vnode in the device's soft
 129  *         state.
 130  *     4.  zoneadmd closes the manager and subsidiary sides and continues to
 131  *         boot the zone.
 132  *
 133  *     Zone halt:
 134  *     1.  While halting the zone, zoneadmd opens the manager and subsidiary
 135  *         sides of the zone's console and issues the ZC_RELEASESUBSID ioctl on
 136  *         the manager side, passing its file descriptor for the subsidiary
 137  *         side as the ioctl argument.
 138  *     2.  zcons decrements the subsidiary side's snode's reference count,
 139  *         releases the subsidiary's vnode, and eliminates its reference to the
 140  *         vnode in the device's soft state.
 141  *     3.  zoneadmd closes the manager and subsidiary sides.
 142  *     4.  zoneadmd destroys the zcons device and continues to halt the zone.
 143  *
 144  * It is necessary for zoneadmd to hold the subsidiary open while issuing
 145  * ZC_RELEASESUBSID because zcons might otherwise release the last reference to
 146  * the subsidiary's vnode.  If it does, then specfs will panic because it will
 147  * expect that the STREAMS configuration for the vnode was destroyed, which
 148  * VN_RELE doesn't do.  Forcing zoneadmd to hold the subsidiary open guarantees
 149  * that zcons won't release the vnode's last reference.  zoneadmd will properly
 150  * destroy the vnode and the snode when it closes the file descriptor.
 151  *
 152  * Technically, any process that can access the manager side can issue these
 153  * ioctls, but they should be treated as private interfaces for zoneadmd.
 154  */
 155 
 156 #include <sys/types.h>
 157 #include <sys/cmn_err.h>
 158 #include <sys/conf.h>
 159 #include <sys/cred.h>
 160 #include <sys/ddi.h>
 161 #include <sys/debug.h>
 162 #include <sys/devops.h>
 163 #include <sys/errno.h>
 164 #include <sys/file.h>
 165 #include <sys/kstr.h>
 166 #include <sys/modctl.h>
 167 #include <sys/param.h>
 168 #include <sys/stat.h>
 169 #include <sys/stream.h>
 170 #include <sys/stropts.h>
 171 #include <sys/strsun.h>
 172 #include <sys/sunddi.h>
 173 #include <sys/sysmacros.h>
 174 #include <sys/systm.h>
 175 #include <sys/types.h>
 176 #include <sys/zcons.h>
 177 #include <sys/vnode.h>
 178 #include <sys/fs/snode.h>
 179 #include <sys/zone.h>
 180 
 181 static int zc_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
 182 static int zc_attach(dev_info_t *, ddi_attach_cmd_t);
 183 static int zc_detach(dev_info_t *, ddi_detach_cmd_t);
 184 
 185 static int zc_open(queue_t *, dev_t *, int, int, cred_t *);
 186 static int zc_close(queue_t *, int, cred_t *);
 187 static int zc_wput(queue_t *, mblk_t *);
 188 static int zc_rsrv(queue_t *);
 189 static int zc_wsrv(queue_t *);
 190 
 191 /*
 192  * The instance number is encoded in the dev_t in the minor number; the lowest
 193  * bit of the minor number is used to track the manager vs. subsidiary side of
 194  * the virtual console.  The rest of the bits in the minor number are the
 195  * instance.
 196  */
 197 #define ZC_MANAGER_MINOR        0
 198 #define ZC_SUBSID_MINOR         1
 199 
 200 #define ZC_INSTANCE(x)          (getminor((x)) >> 1)
 201 #define ZC_NODE(x)              (getminor((x)) & 0x01)
 202 
 203 /*
 204  * This macro converts a zc_state_t pointer to the associated subsidiary minor
 205  * node's dev_t.
 206  */
 207 #define ZC_STATE_TO_SUBDEV(x)   (makedevice(ddi_driver_major((x)->zc_devinfo), \
 208         (minor_t)(ddi_get_instance((x)->zc_devinfo) << 1 | ZC_SUBSID_MINOR)))
 209 
 210 int zcons_debug = 0;
 211 #define DBG(a)   if (zcons_debug) cmn_err(CE_NOTE, a)
 212 #define DBG1(a, b)   if (zcons_debug) cmn_err(CE_NOTE, a, b)
 213 
 214 
 215 /*
 216  * Zone Console Pseudo Terminal Module: stream data structure definitions
 217  */
 218 static struct module_info zc_info = {
 219         31337,  /* c0z we r hAx0rs */
 220         "zcons",
 221         0,
 222         INFPSZ,
 223         _TTY_BUFSIZ,
 224         128
 225 };
 226 
 227 static struct qinit zc_rinit = {
 228         NULL,


 260     zc_getinfo, ZC_CONF_FLAG, &zc_tab_info, ddi_quiesce_not_needed);
 261 
 262 /*
 263  * Module linkage information for the kernel.
 264  */
 265 
 266 static struct modldrv modldrv = {
 267         &mod_driverops,             /* Type of module (this is a pseudo driver) */
 268         "Zone console driver",  /* description of module */
 269         &zc_ops                     /* driver ops */
 270 };
 271 
 272 static struct modlinkage modlinkage = {
 273         MODREV_1,
 274         &modldrv,
 275         NULL
 276 };
 277 
 278 typedef struct zc_state {
 279         dev_info_t *zc_devinfo;
 280         queue_t *zc_manager_rdq;
 281         queue_t *zc_subsid_rdq;
 282         vnode_t *zc_subsid_vnode;
 283         int zc_state;
 284 } zc_state_t;
 285 
 286 #define ZC_STATE_MOPEN  0x01
 287 #define ZC_STATE_SOPEN  0x02
 288 
 289 static void *zc_soft_state;
 290 
 291 /*
 292  * List of STREAMS modules that should be pushed onto every subsidiary instance.
 293  */
 294 static char *zcons_mods[] = {
 295         "ptem",
 296         "ldterm",
 297         "ttcompat",
 298         NULL
 299 };
 300 
 301 int
 302 _init(void)
 303 {
 304         int err;
 305 
 306         if ((err = ddi_soft_state_init(&zc_soft_state,
 307             sizeof (zc_state_t), 0)) != 0) {
 308                 return (err);
 309         }
 310 
 311         if ((err = mod_install(&modlinkage)) != 0)
 312                 ddi_soft_state_fini(zc_soft_state);


 331 int
 332 _info(struct modinfo *modinfop)
 333 {
 334         return (mod_info(&modlinkage, modinfop));
 335 }
 336 
 337 static int
 338 zc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
 339 {
 340         zc_state_t *zcs;
 341         int instance;
 342 
 343         if (cmd != DDI_ATTACH)
 344                 return (DDI_FAILURE);
 345 
 346         instance = ddi_get_instance(dip);
 347         if (ddi_soft_state_zalloc(zc_soft_state, instance) != DDI_SUCCESS)
 348                 return (DDI_FAILURE);
 349 
 350         /*
 351          * Create the manager and subsidiary minor nodes.
 352          */
 353         if ((ddi_create_minor_node(dip, ZCONS_SUBSIDIARY_NAME, S_IFCHR,
 354             instance << 1 | ZC_SUBSID_MINOR, DDI_PSEUDO, 0) == DDI_FAILURE) ||
 355             (ddi_create_minor_node(dip, ZCONS_MANAGER_NAME, S_IFCHR,
 356             instance << 1 | ZC_MANAGER_MINOR, DDI_PSEUDO, 0) == DDI_FAILURE)) {
 357                 ddi_remove_minor_node(dip, NULL);
 358                 ddi_soft_state_free(zc_soft_state, instance);
 359                 return (DDI_FAILURE);
 360         }
 361 
 362         VERIFY((zcs = ddi_get_soft_state(zc_soft_state, instance)) != NULL);
 363         zcs->zc_devinfo = dip;
 364         return (DDI_SUCCESS);
 365 }
 366 
 367 static int
 368 zc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
 369 {
 370         zc_state_t *zcs;
 371         int instance;
 372 
 373         if (cmd != DDI_DETACH)
 374                 return (DDI_FAILURE);
 375 
 376         instance = ddi_get_instance(dip);
 377         if ((zcs = ddi_get_soft_state(zc_soft_state, instance)) == NULL)
 378                 return (DDI_FAILURE);
 379 
 380         if ((zcs->zc_state & ZC_STATE_MOPEN) ||
 381             (zcs->zc_state & ZC_STATE_SOPEN)) {
 382                 DBG1("zc_detach: device (dip=%p) still open\n", (void *)dip);
 383                 return (DDI_FAILURE);
 384         }
 385 
 386         ddi_remove_minor_node(dip, NULL);
 387         ddi_soft_state_free(zc_soft_state, instance);
 388 
 389         return (DDI_SUCCESS);
 390 }
 391 
 392 /*
 393  * zc_getinfo()
 394  *      getinfo(9e) entrypoint.
 395  */

 396 static int
 397 zc_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
 398 {
 399         zc_state_t *zcs;
 400         int instance = ZC_INSTANCE((dev_t)arg);
 401 
 402         switch (infocmd) {
 403         case DDI_INFO_DEVT2DEVINFO:
 404                 if ((zcs = ddi_get_soft_state(zc_soft_state, instance)) == NULL)
 405                         return (DDI_FAILURE);
 406                 *result = zcs->zc_devinfo;
 407                 return (DDI_SUCCESS);
 408         case DDI_INFO_DEVT2INSTANCE:
 409                 *result = (void *)(uintptr_t)instance;
 410                 return (DDI_SUCCESS);
 411         }
 412         return (DDI_FAILURE);
 413 }
 414 
 415 /*
 416  * Return the equivalent queue from the other side of the relationship.
 417  * e.g.: given the subsidiary's write queue, return the manager's write queue.
 418  */
 419 static queue_t *
 420 zc_switch(queue_t *qp)
 421 {
 422         zc_state_t *zcs = qp->q_ptr;
 423         ASSERT(zcs != NULL);
 424 
 425         if (qp == zcs->zc_manager_rdq) {
 426                 return (zcs->zc_subsid_rdq);
 427         } else if (OTHERQ(qp) == zcs->zc_manager_rdq &&
 428             zcs->zc_subsid_rdq != NULL) {
 429                 return (OTHERQ(zcs->zc_subsid_rdq));
 430         } else if (qp == zcs->zc_subsid_rdq) {
 431                 return (zcs->zc_manager_rdq);
 432         } else if (OTHERQ(qp) == zcs->zc_subsid_rdq &&
 433             zcs->zc_manager_rdq != NULL) {
 434                 return (OTHERQ(zcs->zc_manager_rdq));
 435         } else {
 436                 return (NULL);
 437         }
 438 }
 439 
 440 /*
 441  * For debugging and outputting messages.  Returns the name of the side of
 442  * the relationship associated with this queue.
 443  */
 444 static const char *
 445 zc_side(queue_t *qp)
 446 {
 447         zc_state_t *zcs = qp->q_ptr;
 448         ASSERT(zcs != NULL);
 449 
 450         if (qp == zcs->zc_manager_rdq ||
 451             OTHERQ(qp) == zcs->zc_manager_rdq) {
 452                 return ("manager");
 453         }
 454         ASSERT(qp == zcs->zc_subsid_rdq || OTHERQ(qp) == zcs->zc_subsid_rdq);
 455         return ("subsidiary");
 456 }
 457 

 458 static int
 459 zc_manager_open(zc_state_t *zcs,
 460     queue_t     *rqp,   /* pointer to the read side queue */
 461     dev_t       *devp,  /* pointer to stream tail's dev */
 462     int         oflag,  /* the user open(2) supplied flags */
 463     int         sflag,  /* open state flag */
 464     cred_t      *credp) /* credentials */
 465 {
 466         mblk_t *mop;
 467         struct stroptions *sop;
 468 
 469         /*
 470          * Enforce exclusivity on the manager side; the only consumer should
 471          * be the zoneadmd for the zone.
 472          */
 473         if ((zcs->zc_state & ZC_STATE_MOPEN) != 0)
 474                 return (EBUSY);
 475 
 476         if ((mop = allocb(sizeof (struct stroptions), BPRI_MED)) == NULL) {
 477                 DBG("zc_manager_open(): mop allocation failed\n");
 478                 return (ENOMEM);
 479         }
 480 
 481         zcs->zc_state |= ZC_STATE_MOPEN;
 482 
 483         /*
 484          * q_ptr stores driver private data; stash the soft state data on both
 485          * read and write sides of the queue.
 486          */
 487         WR(rqp)->q_ptr = rqp->q_ptr = zcs;
 488         qprocson(rqp);
 489 
 490         /*
 491          * Following qprocson(), the manager side is fully plumbed into the
 492          * STREAM and may send/receive messages.  Setting zcs->zc_manager_rdq
 493          * will allow the subsidiary to send messages to us (the manager).
 494          * This cannot occur before qprocson() because the manager is not
 495          * ready to process them until that point.
 496          */
 497         zcs->zc_manager_rdq = rqp;
 498 
 499         /*
 500          * set up hi/lo water marks on stream head read queue and add
 501          * controlling tty as needed.
 502          */
 503         mop->b_datap->db_type = M_SETOPTS;
 504         mop->b_wptr += sizeof (struct stroptions);
 505         sop = (struct stroptions *)(void *)mop->b_rptr;
 506         if (oflag & FNOCTTY)
 507                 sop->so_flags = SO_HIWAT | SO_LOWAT;
 508         else
 509                 sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY;
 510         sop->so_hiwat = _TTY_BUFSIZ;
 511         sop->so_lowat = 256;
 512         putnext(rqp, mop);
 513 
 514         return (0);
 515 }
 516 

 517 static int
 518 zc_subsidiary_open(zc_state_t *zcs,
 519     queue_t     *rqp,   /* pointer to the read side queue */
 520     dev_t       *devp,  /* pointer to stream tail's dev */
 521     int         oflag,  /* the user open(2) supplied flags */
 522     int         sflag,  /* open state flag */
 523     cred_t      *credp) /* credentials */
 524 {
 525         mblk_t *mop;
 526         struct stroptions *sop;
 527         major_t major;
 528         minor_t minor;
 529         minor_t lastminor;
 530         uint_t anchorindex;
 531 
 532         /*
 533          * The subsidiary side can be opened as many times as needed.
 534          */
 535         if ((zcs->zc_state & ZC_STATE_SOPEN) != 0) {
 536                 ASSERT((rqp != NULL) && (WR(rqp)->q_ptr == zcs));
 537                 return (0);
 538         }
 539 
 540         /*
 541          * Set up sad(7D) so that the necessary STREAMS modules will be in
 542          * place.  A wrinkle is that 'ptem' must be anchored
 543          * in place (see streamio(7i)) because we always want the console to
 544          * have terminal semantics.
 545          */
 546         minor = ddi_get_instance(zcs->zc_devinfo) << 1 | ZC_SUBSID_MINOR;
 547         major = ddi_driver_major(zcs->zc_devinfo);
 548         lastminor = 0;
 549         anchorindex = 1;
 550         if (kstr_autopush(SET_AUTOPUSH, &major, &minor, &lastminor,
 551             &anchorindex, zcons_mods) != 0) {
 552                 DBG("zc_subsidiary_open(): kstr_autopush() failed\n");
 553                 return (EIO);
 554         }
 555 
 556         if ((mop = allocb(sizeof (struct stroptions), BPRI_MED)) == NULL) {
 557                 DBG("zc_subsidiary_open(): mop allocation failed\n");
 558                 return (ENOMEM);
 559         }
 560 
 561         zcs->zc_state |= ZC_STATE_SOPEN;
 562 
 563         /*
 564          * q_ptr stores driver private data; stash the soft state data on both
 565          * read and write sides of the queue.
 566          */
 567         WR(rqp)->q_ptr = rqp->q_ptr = zcs;
 568 
 569         qprocson(rqp);
 570 
 571         /*
 572          * Must follow qprocson(), since we aren't ready to process until then.
 573          */
 574         zcs->zc_subsid_rdq = rqp;
 575 
 576         /*
 577          * set up hi/lo water marks on stream head read queue and add
 578          * controlling tty as needed.
 579          */
 580         mop->b_datap->db_type = M_SETOPTS;
 581         mop->b_wptr += sizeof (struct stroptions);
 582         sop = (struct stroptions *)(void *)mop->b_rptr;
 583         sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY;
 584         sop->so_hiwat = _TTY_BUFSIZ;
 585         sop->so_lowat = 256;
 586         putnext(rqp, mop);
 587 
 588         return (0);
 589 }
 590 
 591 /*
 592  * open(9e) entrypoint; checks sflag, and rejects anything unordinary.
 593  */
 594 static int
 595 zc_open(queue_t *rqp,   /* pointer to the read side queue */
 596     dev_t   *devp,      /* pointer to stream tail's dev */
 597     int oflag,          /* the user open(2) supplied flags */
 598     int sflag,          /* open state flag */
 599     cred_t  *credp)     /* credentials */
 600 {
 601         int instance = ZC_INSTANCE(*devp);
 602         int ret;
 603         zc_state_t *zcs;
 604 
 605         if (sflag != 0)
 606                 return (EINVAL);
 607 
 608         if ((zcs = ddi_get_soft_state(zc_soft_state, instance)) == NULL)
 609                 return (ENXIO);
 610 
 611         switch (ZC_NODE(*devp)) {
 612         case ZC_MANAGER_MINOR:
 613                 ret = zc_manager_open(zcs, rqp, devp, oflag, sflag, credp);
 614                 break;
 615         case ZC_SUBSID_MINOR:
 616                 ret = zc_subsidiary_open(zcs, rqp, devp, oflag, sflag, credp);
 617                 break;
 618         default:
 619                 ret = ENXIO;
 620                 break;
 621         }
 622 
 623         return (ret);
 624 }
 625 
 626 /*
 627  * close(9e) entrypoint.
 628  */

 629 static int
 630 zc_close(queue_t *rqp, int flag, cred_t *credp)
 631 {
 632         queue_t *wqp;
 633         mblk_t  *bp;
 634         zc_state_t *zcs;
 635         major_t major;
 636         minor_t minor;
 637 
 638         zcs = (zc_state_t *)rqp->q_ptr;
 639 
 640         if (rqp == zcs->zc_manager_rdq) {
 641                 DBG("Closing manager side");
 642 
 643                 zcs->zc_manager_rdq = NULL;
 644                 zcs->zc_state &= ~ZC_STATE_MOPEN;
 645 
 646                 /*
 647                  * qenable subsidiary side write queue so that it can flush
 648                  * its messages as manager's read queue is going away
 649                  */
 650                 if (zcs->zc_subsid_rdq != NULL) {
 651                         qenable(WR(zcs->zc_subsid_rdq));
 652                 }
 653 
 654                 qprocsoff(rqp);
 655                 WR(rqp)->q_ptr = rqp->q_ptr = NULL;
 656 
 657         } else if (rqp == zcs->zc_subsid_rdq) {
 658 
 659                 DBG("Closing subsidiary side");
 660                 zcs->zc_state &= ~ZC_STATE_SOPEN;
 661                 zcs->zc_subsid_rdq = NULL;
 662 
 663                 wqp = WR(rqp);
 664                 while ((bp = getq(wqp)) != NULL) {
 665                         if (zcs->zc_manager_rdq != NULL)
 666                                 putnext(zcs->zc_manager_rdq, bp);
 667                         else if (bp->b_datap->db_type == M_IOCTL)
 668                                 miocnak(wqp, bp, 0, 0);
 669                         else
 670                                 freemsg(bp);
 671                 }
 672 
 673                 /*
 674                  * Qenable manager side write queue so that it can flush its
 675                  * messages as subsidiarys's read queue is going away.
 676                  */
 677                 if (zcs->zc_manager_rdq != NULL)
 678                         qenable(WR(zcs->zc_manager_rdq));
 679 
 680                 qprocsoff(rqp);
 681                 WR(rqp)->q_ptr = rqp->q_ptr = NULL;
 682 
 683                 /*
 684                  * Clear the sad configuration so that reopening doesn't fail
 685                  * to set up sad configuration.
 686                  */
 687                 major = ddi_driver_major(zcs->zc_devinfo);
 688                 minor = ddi_get_instance(zcs->zc_devinfo) << 1 |
 689                     ZC_SUBSID_MINOR;
 690                 (void) kstr_autopush(CLR_AUTOPUSH, &major, &minor, NULL, NULL,
 691                     NULL);
 692         }
 693 
 694         return (0);
 695 }
 696 
 697 static void
 698 handle_mflush(queue_t *qp, mblk_t *mp)
 699 {
 700         mblk_t *nmp;
 701         DBG1("M_FLUSH on %s side", zc_side(qp));
 702 
 703         if (*mp->b_rptr & FLUSHW) {
 704                 DBG1("M_FLUSH, FLUSHW, %s side", zc_side(qp));
 705                 flushq(qp, FLUSHDATA);
 706                 *mp->b_rptr &= ~FLUSHW;
 707                 if ((*mp->b_rptr & FLUSHR) == 0) {
 708                         /*
 709                          * FLUSHW only. Change to FLUSHR and putnext other side,


 717                 } else if ((zc_switch(RD(qp)) != NULL) &&
 718                     (nmp = copyb(mp)) != NULL) {
 719                         /*
 720                          * It is a FLUSHRW; we copy the mblk and send
 721                          * it to the other side, since we still need to use
 722                          * the mblk in FLUSHR processing, below.
 723                          */
 724                         putnext(zc_switch(RD(qp)), nmp);
 725                 }
 726         }
 727 
 728         if (*mp->b_rptr & FLUSHR) {
 729                 DBG("qreply(qp) turning FLUSHR around\n");
 730                 qreply(qp, mp);
 731                 return;
 732         }
 733         freemsg(mp);
 734 }
 735 
 736 /*
 737  * wput(9E) is symmetric for manager and subsidiary sides, so this handles both
 738  * without splitting the codepath.  (The only exception to this is the
 739  * processing of zcons ioctls, which is restricted to the manager side.)
 740  *
 741  * zc_wput() looks at the other side; if there is no process holding that
 742  * side open, it frees the message.  This prevents processes from hanging
 743  * if no one is holding open the console.  Otherwise, it putnext's high
 744  * priority messages, putnext's normal messages if possible, and otherwise
 745  * enqueues the messages; in the case that something is enqueued, wsrv(9E)
 746  * will take care of eventually shuttling I/O to the other side.
 747  */
 748 static int
 749 zc_wput(queue_t *qp, mblk_t *mp)
 750 {
 751         unsigned char type = mp->b_datap->db_type;
 752         zc_state_t *zcs;
 753         struct iocblk *iocbp;
 754         file_t *subsidiary_filep;
 755         struct snode *subsidiary_snodep;
 756         int subsidiary_fd;
 757 
 758         ASSERT(qp->q_ptr);
 759 
 760         DBG1("entering zc_wput, %s side", zc_side(qp));
 761 
 762         /*
 763          * Process zcons ioctl messages if qp is the manager console's write
 764          * queue.
 765          */
 766         zcs = (zc_state_t *)qp->q_ptr;
 767         if (zcs->zc_manager_rdq != NULL && qp == WR(zcs->zc_manager_rdq) &&
 768             type == M_IOCTL) {
 769                 iocbp = (struct iocblk *)(void *)mp->b_rptr;
 770                 switch (iocbp->ioc_cmd) {
 771                 case ZC_HOLDSUBSID:
 772                         /*
 773                          * Hold the subsidiary's vnode and increment the
 774                          * refcount of the snode.  If the vnode is already
 775                          * held, then indicate success.
 776                          */
 777                         if (iocbp->ioc_count != TRANSPARENT) {
 778                                 miocack(qp, mp, 0, EINVAL);
 779                                 return (0);
 780                         }
 781                         if (zcs->zc_subsid_vnode != NULL) {
 782                                 miocack(qp, mp, 0, 0);
 783                                 return (0);
 784                         }
 785 
 786                         /*
 787                          * The process that passed the ioctl must be running in
 788                          * the global zone.
 789                          */
 790                         if (curzone != global_zone) {
 791                                 miocack(qp, mp, 0, EINVAL);
 792                                 return (0);
 793                         }
 794 
 795                         /*
 796                          * The calling process must pass a file descriptor for
 797                          * the subsidiary device.
 798                          */
 799                         subsidiary_fd =
 800                             (int)(intptr_t)*(caddr_t *)(void *)mp->b_cont->
 801                             b_rptr;
 802                         subsidiary_filep = getf(subsidiary_fd);
 803                         if (subsidiary_filep == NULL) {
 804                                 miocack(qp, mp, 0, EINVAL);
 805                                 return (0);
 806                         }
 807                         if (ZC_STATE_TO_SUBDEV(zcs) !=
 808                             subsidiary_filep->f_vnode->v_rdev) {
 809                                 releasef(subsidiary_fd);
 810                                 miocack(qp, mp, 0, EINVAL);
 811                                 return (0);
 812                         }
 813 
 814                         /*
 815                          * Get a reference to the subsidiary's vnode.  Also
 816                          * bump the reference count on the associated snode.
 817                          */
 818                         ASSERT(vn_matchops(subsidiary_filep->f_vnode,
 819                             spec_getvnodeops()));
 820                         zcs->zc_subsid_vnode = subsidiary_filep->f_vnode;
 821                         VN_HOLD(zcs->zc_subsid_vnode);
 822                         subsidiary_snodep = VTOCS(zcs->zc_subsid_vnode);
 823                         mutex_enter(&subsidiary_snodep->s_lock);
 824                         ++subsidiary_snodep->s_count;
 825                         mutex_exit(&subsidiary_snodep->s_lock);
 826                         releasef(subsidiary_fd);
 827                         miocack(qp, mp, 0, 0);
 828                         return (0);
 829                 case ZC_RELEASESUBSID:
 830                         /*
 831                          * Release the manager's handle on the subsidiary's
 832                          * vnode.  If there isn't a handle for the vnode, then
 833                          * indicate success.
 834                          */
 835                         if (iocbp->ioc_count != TRANSPARENT) {
 836                                 miocack(qp, mp, 0, EINVAL);
 837                                 return (0);
 838                         }
 839                         if (zcs->zc_subsid_vnode == NULL) {
 840                                 miocack(qp, mp, 0, 0);
 841                                 return (0);
 842                         }
 843 
 844                         /*
 845                          * The process that passed the ioctl must be running in
 846                          * the global zone.
 847                          */
 848                         if (curzone != global_zone) {
 849                                 miocack(qp, mp, 0, EINVAL);
 850                                 return (0);
 851                         }
 852 
 853                         /*
 854                          * The process that passed the ioctl must have provided
 855                          * a file descriptor for the subsidiary device.  Make
 856                          * sure this is correct.
 857                          */
 858                         subsidiary_fd =
 859                             (int)(intptr_t)*(caddr_t *)(void *)mp->b_cont->
 860                             b_rptr;
 861                         subsidiary_filep = getf(subsidiary_fd);
 862                         if (subsidiary_filep == NULL) {
 863                                 miocack(qp, mp, 0, EINVAL);
 864                                 return (0);
 865                         }
 866                         if (zcs->zc_subsid_vnode->v_rdev !=
 867                             subsidiary_filep->f_vnode->v_rdev) {
 868                                 releasef(subsidiary_fd);
 869                                 miocack(qp, mp, 0, EINVAL);
 870                                 return (0);
 871                         }
 872 
 873                         /*
 874                          * Decrement the snode's reference count and release the
 875                          * vnode.
 876                          */
 877                         ASSERT(vn_matchops(subsidiary_filep->f_vnode,
 878                             spec_getvnodeops()));
 879                         subsidiary_snodep = VTOCS(zcs->zc_subsid_vnode);
 880                         mutex_enter(&subsidiary_snodep->s_lock);
 881                         --subsidiary_snodep->s_count;
 882                         mutex_exit(&subsidiary_snodep->s_lock);
 883                         VN_RELE(zcs->zc_subsid_vnode);
 884                         zcs->zc_subsid_vnode = NULL;
 885                         releasef(subsidiary_fd);
 886                         miocack(qp, mp, 0, 0);
 887                         return (0);
 888                 default:
 889                         break;
 890                 }
 891         }
 892 
 893         if (zc_switch(RD(qp)) == NULL) {
 894                 DBG1("wput to %s side (no one listening)", zc_side(qp));
 895                 switch (type) {
 896                 case M_FLUSH:
 897                         handle_mflush(qp, mp);
 898                         break;
 899                 case M_IOCTL:
 900                         miocnak(qp, mp, 0, 0);
 901                         break;
 902                 default:
 903                         freemsg(mp);
 904                         break;
 905                 }


 927                 DBG1("done (hipri) wput, %s side", zc_side(qp));
 928                 return (0);
 929         }
 930 
 931         /*
 932          * Only putnext if there isn't already something in the queue.
 933          * otherwise things would wind up out of order.
 934          */
 935         if (qp->q_first == NULL && bcanputnext(RD(zc_switch(qp)), mp->b_band)) {
 936                 DBG("wput: putting message to other side\n");
 937                 putnext(RD(zc_switch(qp)), mp);
 938         } else {
 939                 DBG("wput: putting msg onto queue\n");
 940                 (void) putq(qp, mp);
 941         }
 942         DBG1("done wput, %s side", zc_side(qp));
 943         return (0);
 944 }
 945 
 946 /*
 947  * rsrv(9E) is symmetric for manager and subsidiary, so zc_rsrv() handles both
 948  * without splitting up the codepath.
 949  *
 950  * Enable the write side of the partner.  This triggers the partner to send
 951  * messages queued on its write side to this queue's read side.
 952  */
 953 static int
 954 zc_rsrv(queue_t *qp)
 955 {
 956         zc_state_t *zcs;
 957         zcs = (zc_state_t *)qp->q_ptr;
 958 
 959         /*
 960          * Care must be taken here, as either of the manager or subsidiary side
 961          * qptr could be NULL.
 962          */
 963         ASSERT(qp == zcs->zc_manager_rdq || qp == zcs->zc_subsid_rdq);
 964         if (zc_switch(qp) == NULL) {
 965                 DBG("zc_rsrv: other side isn't listening\n");
 966                 return (0);
 967         }
 968         qenable(WR(zc_switch(qp)));
 969         return (0);
 970 }
 971 
 972 /*
 973  * This routine is symmetric for manager and subsidiary, so it handles both
 974  * without splitting up the codepath.
 975  *
 976  * If there are messages on this queue that can be sent to the other, send
 977  * them via putnext(). Else, if queued messages cannot be sent, leave them
 978  * on this queue.
 979  */
 980 static int
 981 zc_wsrv(queue_t *qp)
 982 {
 983         mblk_t *mp;
 984 
 985         DBG1("zc_wsrv manager (%s) side", zc_side(qp));
 986 
 987         /*
 988          * Partner has no read queue, so take the data, and throw it away.
 989          */
 990         if (zc_switch(RD(qp)) == NULL) {
 991                 DBG("zc_wsrv: other side isn't listening");
 992                 while ((mp = getq(qp)) != NULL) {
 993                         if (mp->b_datap->db_type == M_IOCTL)
 994                                 miocnak(qp, mp, 0, 0);
 995                         else
 996                                 freemsg(mp);
 997                 }
 998                 flushq(qp, FLUSHALL);
 999                 return (0);
1000         }
1001 
1002         /*
1003          * while there are messages on this write queue...
1004          */
1005         while ((mp = getq(qp)) != NULL) {