1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /*
  27  * This file contains global data and code shared between master and slave parts
  28  * of the pseudo-terminal driver.
  29  *
  30  * Pseudo terminals (or pt's for short) are allocated dynamically.
  31  * pt's are put in the global ptms_slots array indexed by minor numbers.
  32  *
  33  * The slots array is initially small (of the size NPTY_MIN). When more pt's are
  34  * needed than the slot array size, the larger slot array is allocated and all
  35  * opened pt's move to the new one.
  36  *
  37  * Resource allocation:
  38  *
  39  *      pt_ttys structures are allocated via pt_ttys_alloc, which uses
  40  *              kmem_cache_alloc().
  41  *      Minor number space is allocated via vmem_alloc() interface.
  42  *      ptms_slots arrays are allocated via kmem_alloc().
  43  *
  44  *   Minors are started from 1 instead of 0 because vmem_alloc returns 0 in case
  45  *   of failure. Also, in anticipation of removing clone device interface to
  46  *   pseudo-terminal subsystem, minor 0 should not be used. (Potential future
  47  *   development).
  48  *
  49  *   After the table slot size reaches pt_maxdelta, we stop 2^N extension
  50  *   algorithm and start extending the slot table size by pt_maxdelta.
  51  *
  52  *   Device entries /dev/pts directory are created dynamically by the
  53  *   /dev filesystem. We no longer call ddi_create_minor_node() on
  54  *   behalf of the slave driver. The /dev filesystem creates /dev/pts
  55  *   nodes based on the pt_ttys array.
  56  *
  57  * Synchronization:
  58  *
  59  *   All global data synchronization between ptm/pts is done via global
  60  *   ptms_lock mutex which is implicitly initialized by declaring it global.
  61  *
  62  *   Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
  63  *   pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
  64  *
  65  *   PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
  66  *   which allow reader locks to be reacquired by the same thread (usual
  67  *   reader/writer locks can't be used for that purpose since it is illegal for
  68  *   a thread to acquire a lock it already holds, even as a reader). The sole
  69  *   purpose of these macros is to guarantee that the peer queue will not
  70  *   disappear (due to closing peer) while it is used. It is safe to use
  71  *   PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
  72  *   they are not real locks but reference counts).
  73  *
  74  *   PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave
  75  *   open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
  76  *   be set to appropriate queues *after* qprocson() is called during open (to
  77  *   prevent peer from accessing the queue with incomplete plumbing) and set to
  78  *   NULL before qprocsoff() is called during close. Put and service procedures
  79  *   use PT_ENTER_READ/PT_EXIT_READ to prevent peer closes.
  80  *
  81  *   The pt_nullmsg field is only used in open/close routines and is also
  82  *   protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
  83  *   holds.
  84  *
  85  * Lock Ordering:
  86  *
  87  *   If both ptms_lock and per-pty lock should be held, ptms_lock should always
  88  *   be entered first, followed by per-pty lock.
  89  *
  90  * Global functions:
  91  *
  92  * void ptms_init(void);
  93  *
  94  *      Called by pts/ptm _init entry points. It performes one-time
  95  *      initialization needed for both pts and ptm. This initialization is done
  96  *      here and not in ptms_initspace because all these data structures are not
  97  *      needed if pseudo-terminals are not used in the system.
  98  *
  99  * struct pt_ttys *pt_ttys_alloc(void);
 100  *
 101  *      Allocate new minor number and pseudo-terminal entry. May sleep.
 102  *      New minor number is recorded in pt_minor field of the entry returned.
 103  *      This routine also initializes pt_minor and pt_state fields of the new
 104  *      pseudo-terminal and puts a pointer to it into ptms_slots array.
 105  *
 106  * struct pt_ttys *ptms_minor2ptty(minor_t minor)
 107  *
 108  *      Find pt_ttys structure by minor number.
 109  *      Returns NULL when minor is out of range.
 110  *
 111  * int ptms_minor_valid(minor_t minor, uid_t *ruid, gid_t *rgid)
 112  *
 113  *      Check if minor refers to an allocated pty in the current zone.
 114  *      Returns
 115  *               0 if not allocated or not for this zone.
 116  *               1 if an allocated pty in the current zone.
 117  *      Also returns owner of pty.
 118  *
 119  * int ptms_minor_exists(minor_t minor)
 120  *      Check if minor refers to an allocated pty (in any zone)
 121  *      Returns
 122  *              0 if not an allocated pty
 123  *              1 if an allocated pty
 124  *
 125  * void ptms_set_owner(minor_t minor, uid_t ruid, gid_t rgid)
 126  *
 127  *      Sets the owner associated with a pty.
 128  *
 129  * void ptms_close(struct pt_ttys *pt, uint_t flags_to_clear);
 130  *
 131  *      Clear flags_to_clear in pt and if no one owns it (PTMOPEN/PTSOPEN not
 132  *      set) free pt entry and corresponding slot.
 133  *
 134  * Tuneables and configuration:
 135  *
 136  *      pt_cnt: minimum number of pseudo-terminals in the system. The system
 137  *              should provide at least this number of ptys (provided sufficient
 138  *              memory is available). It is different from the older semantics
 139  *              of pt_cnt meaning maximum number of ptys.
 140  *              Set to 0 by default.
 141  *
 142  *      pt_max_pty: Maximum number of pseudo-terminals in the system. The system
 143  *              should not allocate more ptys than pt_max_pty (although, it may
 144  *              impose stricter maximum). Zero value means no user-defined
 145  *              maximum. This is intended to be used as "denial-of-service"
 146  *              protection.
 147  *              Set to 0 by default.
 148  *
 149  *         Both pt_cnt and pt_max_pty may be modified during system lifetime
 150  *         with their semantics preserved.
 151  *
 152  *      pt_init_cnt: Initial size of ptms_slots array. Set to NPTY_INITIAL.
 153  *
 154  *      pt_ptyofmem: Approximate percentage of system memory that may be
 155  *              occupied by pty data structures. Initially set to NPTY_PERCENT.
 156  *              This variable is used once during initialization to estimate
 157  *              maximum number of ptys in the system. The actual maximum is
 158  *              determined as minimum of pt_max_pty and calculated value.
 159  *
 160  *      pt_maxdelta: Maximum extension chunk of the slot table.
 161  */
 162 
 163 
 164 
 165 #include <sys/types.h>
 166 #include <sys/param.h>
 167 #include <sys/termios.h>
 168 #include <sys/stream.h>
 169 #include <sys/stropts.h>
 170 #include <sys/kmem.h>
 171 #include <sys/ptms.h>
 172 #include <sys/stat.h>
 173 #include <sys/sunddi.h>
 174 #include <sys/ddi.h>
 175 #include <sys/bitmap.h>
 176 #include <sys/sysmacros.h>
 177 #include <sys/ddi_impldefs.h>
 178 #include <sys/zone.h>
 179 #ifdef DEBUG
 180 #include <sys/strlog.h>
 181 #endif
 182 
 183 
 184 /* Initial number of ptms slots */
 185 #define NPTY_INITIAL 16
 186 
 187 #define NPTY_PERCENT 5
 188 
 189 /* Maximum increment of the slot table size */
 190 #define PTY_MAXDELTA 128
 191 
 192 /*
 193  * Tuneable variables.
 194  */
 195 uint_t  pt_cnt = 0;                     /* Minimum number of ptys */
 196 size_t  pt_max_pty = 0;                 /* Maximum number of ptys */
 197 uint_t  pt_init_cnt = NPTY_INITIAL;     /* Initial number of ptms slots */
 198 uint_t  pt_pctofmem = NPTY_PERCENT;     /* Percent of memory to use for ptys */
 199 uint_t  pt_maxdelta = PTY_MAXDELTA;     /* Max increment for slot table size */
 200 
 201 /* Other global variables */
 202 
 203 kmutex_t ptms_lock;                     /* Global data access lock */
 204 
 205 /*
 206  * Slot array and its management variables
 207  */
 208 static struct pt_ttys **ptms_slots = NULL; /* Slots for actual pt structures */
 209 static size_t ptms_nslots = 0;          /* Size of slot array */
 210 static size_t ptms_ptymax = 0;          /* Maximum number of ptys */
 211 static size_t ptms_inuse = 0;           /* # of ptys currently allocated */
 212 
 213 dev_info_t      *pts_dip = NULL;        /* set if slave is attached */
 214 
 215 static struct kmem_cache *ptms_cache = NULL;    /* pty cache */
 216 
 217 static vmem_t *ptms_minor_arena = NULL; /* Arena for device minors */
 218 
 219 static uint_t ptms_roundup(uint_t);
 220 static int ptms_constructor(void *, void *, int);
 221 static void ptms_destructor(void *, void *);
 222 static minor_t ptms_grow(void);
 223 
 224 /*
 225  * Total size occupied by one pty. Each pty master/slave pair consumes one
 226  * pointer for ptms_slots array, one pt_ttys structure and one empty message
 227  * preallocated for pts close.
 228  */
 229 
 230 #define PTY_SIZE (sizeof (struct pt_ttys) + \
 231     sizeof (struct pt_ttys *) + \
 232     sizeof (dblk_t))
 233 
 234 #ifdef DEBUG
 235 int ptms_debug = 0;
 236 #define PTMOD_ID 5
 237 #endif
 238 
 239 /*
 240  * Clear all bits of x except the highest bit
 241  */
 242 #define truncate(x)     ((x) <= 2 ? (x) : (1 << (highbit(x) - 1)))
 243 
 244 /*
 245  * Roundup the number to the nearest power of 2
 246  */
 247 static uint_t
 248 ptms_roundup(uint_t x)
 249 {
 250         uint_t p = truncate(x); /* x with non-high bits stripped */
 251 
 252         /*
 253          * If x is a power of 2, return x, otherwise roundup.
 254          */
 255         return (p == x ? p : (p * 2));
 256 }
 257 
 258 /*
 259  * Allocate ptms_slots array and kmem cache for pt_ttys. This initialization is
 260  * only called once during system lifetime. Called from ptm or pts _init
 261  * routine.
 262  */
 263 void
 264 ptms_init(void)
 265 {
 266         mutex_enter(&ptms_lock);
 267 
 268         if (ptms_slots == NULL) {
 269                 ptms_slots = kmem_zalloc(pt_init_cnt *
 270                     sizeof (struct pt_ttys *), KM_SLEEP);
 271 
 272                 ptms_cache = kmem_cache_create("pty_map",
 273                     sizeof (struct pt_ttys), 0, ptms_constructor,
 274                     ptms_destructor, NULL, NULL, NULL, 0);
 275 
 276                 ptms_nslots = pt_init_cnt;
 277 
 278                 /* Allocate integer space for minor numbers */
 279                 ptms_minor_arena = vmem_create("ptms_minor", (void *)1,
 280                     ptms_nslots, 1, NULL, NULL, NULL, 0,
 281                     VM_SLEEP | VMC_IDENTIFIER);
 282 
 283                 /*
 284                  * Calculate available number of ptys - how many ptys can we
 285                  * allocate in pt_pctofmem % of available memory. The value is
 286                  * rounded up to the nearest power of 2.
 287                  */
 288                 ptms_ptymax = ptms_roundup((pt_pctofmem * kmem_maxavail()) /
 289                     (100 * PTY_SIZE));
 290         }
 291         mutex_exit(&ptms_lock);
 292 }
 293 
 294 /*
 295  * This routine attaches the pts dip.
 296  */
 297 int
 298 ptms_attach_slave(void)
 299 {
 300         if (pts_dip == NULL && i_ddi_attach_pseudo_node("pts") == NULL)
 301                 return (-1);
 302 
 303         ASSERT(pts_dip);
 304         return (0);
 305 }
 306 
 307 /*
 308  * Called from /dev fs. Checks if dip is attached,
 309  * and if it is, returns its major number.
 310  */
 311 major_t
 312 ptms_slave_attached(void)
 313 {
 314         major_t maj = DDI_MAJOR_T_NONE;
 315 
 316         mutex_enter(&ptms_lock);
 317         if (pts_dip)
 318                 maj = ddi_driver_major(pts_dip);
 319         mutex_exit(&ptms_lock);
 320 
 321         return (maj);
 322 }
 323 
 324 /*
 325  * Allocate new minor number and pseudo-terminal entry. Returns the new entry or
 326  * NULL if no memory or maximum number of entries reached.
 327  */
 328 struct pt_ttys *
 329 pt_ttys_alloc(void)
 330 {
 331         minor_t dminor;
 332         struct pt_ttys *pt = NULL;
 333 
 334         mutex_enter(&ptms_lock);
 335 
 336         /*
 337          * Always try to allocate new pty when pt_cnt minimum limit is not
 338          * achieved. If it is achieved, the maximum is determined by either
 339          * user-specified value (if it is non-zero) or our memory estimations -
 340          * whatever is less.
 341          */
 342         if (ptms_inuse >= pt_cnt) {
 343                 /*
 344                  * When system achieved required minimum of ptys, check for the
 345                  *   denial of service limits.
 346                  *
 347                  * Since pt_max_pty may be zero, the formula below is used to
 348                  * avoid conditional expression. It will equal to pt_max_pty if
 349                  * it is not zero and ptms_ptymax otherwise.
 350                  */
 351                 size_t user_max = (pt_max_pty == 0 ? ptms_ptymax : pt_max_pty);
 352 
 353                 /* Do not try to allocate more than allowed */
 354                 if (ptms_inuse >= min(ptms_ptymax, user_max)) {
 355                         mutex_exit(&ptms_lock);
 356                         return (NULL);
 357                 }
 358         }
 359         ptms_inuse++;
 360 
 361         /*
 362          * Allocate new minor number. If this fails, all slots are busy and
 363          * we need to grow the hash.
 364          */
 365         dminor = (minor_t)(uintptr_t)
 366             vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP);
 367 
 368         if (dminor == 0) {
 369                 /* Grow the cache and retry allocation */
 370                 dminor = ptms_grow();
 371         }
 372 
 373         if (dminor == 0) {
 374                 /* Not enough memory now */
 375                 ptms_inuse--;
 376                 mutex_exit(&ptms_lock);
 377                 return (NULL);
 378         }
 379 
 380         pt = kmem_cache_alloc(ptms_cache, KM_NOSLEEP);
 381         if (pt == NULL) {
 382                 /* Not enough memory - this entry can't be used now. */
 383                 vmem_free(ptms_minor_arena, (void *)(uintptr_t)dminor, 1);
 384                 ptms_inuse--;
 385         } else {
 386                 pt->pt_minor = dminor;
 387                 pt->pt_pid = curproc->p_pid;      /* For debugging */
 388                 pt->pt_state = (PTMOPEN | PTLOCK);
 389                 pt->pt_zoneid = getzoneid();
 390                 pt->pt_ruid = 0; /* we don't know uid/gid yet. Report as root */
 391                 pt->pt_rgid = 0;
 392                 ASSERT(ptms_slots[dminor - 1] == NULL);
 393                 ptms_slots[dminor - 1] = pt;
 394         }
 395 
 396         mutex_exit(&ptms_lock);
 397         return (pt);
 398 }
 399 
 400 /*
 401  * Get pt_ttys structure by minor number.
 402  * Returns NULL when minor is out of range.
 403  */
 404 struct pt_ttys *
 405 ptms_minor2ptty(minor_t dminor)
 406 {
 407         struct pt_ttys *pt = NULL;
 408 
 409         ASSERT(mutex_owned(&ptms_lock));
 410         if ((dminor >= 1) && (dminor <= ptms_nslots) && ptms_slots != NULL)
 411                 pt = ptms_slots[dminor - 1];
 412 
 413         return (pt);
 414 }
 415 
 416 /*
 417  * Invoked in response to chown on /dev/pts nodes to change the
 418  * permission on a pty
 419  */
 420 void
 421 ptms_set_owner(minor_t dminor, uid_t ruid, gid_t rgid)
 422 {
 423         struct pt_ttys *pt;
 424 
 425         ASSERT(ruid >= 0);
 426         ASSERT(rgid >= 0);
 427 
 428         if (ruid < 0 || rgid < 0)
 429                 return;
 430 
 431         /*
 432          * /dev/pts/0 is not used, but some applications may check it. There
 433          * is no pty backing it - so we have nothing to do.
 434          */
 435         if (dminor == 0)
 436                 return;
 437 
 438         mutex_enter(&ptms_lock);
 439         pt = ptms_minor2ptty(dminor);
 440         if (pt != NULL && pt->pt_zoneid == getzoneid()) {
 441                 pt->pt_ruid = ruid;
 442                 pt->pt_rgid = rgid;
 443         }
 444         mutex_exit(&ptms_lock);
 445 }
 446 
 447 /*
 448  * Given a ptm/pts minor number
 449  * returns:
 450  *      1 if the pty is allocated to the current zone.
 451  *      0 otherwise
 452  *
 453  * If the pty is allocated to the current zone, it also returns the owner.
 454  */
 455 int
 456 ptms_minor_valid(minor_t dminor, uid_t *ruid, gid_t *rgid)
 457 {
 458         struct pt_ttys *pt;
 459         int ret;
 460 
 461         ASSERT(ruid);
 462         ASSERT(rgid);
 463 
 464         *ruid = (uid_t)-1;
 465         *rgid = (gid_t)-1;
 466 
 467         /*
 468          * /dev/pts/0 is not used, but some applications may check it, so create
 469          * it also. Report the owner as root. It belongs to all zones.
 470          */
 471         if (dminor == 0) {
 472                 *ruid = 0;
 473                 *rgid = 0;
 474                 return (1);
 475         }
 476 
 477         ret = 0;
 478         mutex_enter(&ptms_lock);
 479         pt = ptms_minor2ptty(dminor);
 480         if (pt != NULL) {
 481                 ASSERT(pt->pt_ruid >= 0);
 482                 ASSERT(pt->pt_rgid >= 0);
 483                 if (pt->pt_zoneid == getzoneid()) {
 484                         ret = 1;
 485                         *ruid = pt->pt_ruid;
 486                         *rgid = pt->pt_rgid;
 487                 }
 488         }
 489         mutex_exit(&ptms_lock);
 490 
 491         return (ret);
 492 }
 493 
 494 /*
 495  * Given a ptm/pts minor number
 496  * returns:
 497  *      0 if the pty is not allocated
 498  *      1 if the pty is allocated
 499  */
 500 int
 501 ptms_minor_exists(minor_t dminor)
 502 {
 503         int ret;
 504 
 505         mutex_enter(&ptms_lock);
 506         ret = ptms_minor2ptty(dminor) ? 1 : 0;
 507         mutex_exit(&ptms_lock);
 508 
 509         return (ret);
 510 }
 511 
 512 /*
 513  * Close the pt and clear flags_to_clear.
 514  * If pt device is not opened by someone else, free it and clear its slot.
 515  */
 516 void
 517 ptms_close(struct pt_ttys *pt, uint_t flags_to_clear)
 518 {
 519         uint_t flags;
 520 
 521         ASSERT(MUTEX_NOT_HELD(&ptms_lock));
 522         ASSERT(pt != NULL);
 523 
 524         mutex_enter(&ptms_lock);
 525 
 526         mutex_enter(&pt->pt_lock);
 527         pt->pt_state &= ~flags_to_clear;
 528         flags = pt->pt_state;
 529         mutex_exit(&pt->pt_lock);
 530 
 531         if (! (flags & (PTMOPEN | PTSOPEN))) {
 532                 /* No one owns the entry - free it */
 533 
 534                 ASSERT(pt->ptm_rdq == NULL);
 535                 ASSERT(pt->pts_rdq == NULL);
 536                 ASSERT(pt->pt_nullmsg == NULL);
 537                 ASSERT(pt->pt_refcnt == 0);
 538                 ASSERT(pt->pt_minor <= ptms_nslots);
 539                 ASSERT(ptms_slots[pt->pt_minor - 1] == pt);
 540                 ASSERT(ptms_inuse > 0);
 541 
 542                 ptms_inuse--;
 543 
 544                 pt->pt_pid = 0;
 545 
 546                 ptms_slots[pt->pt_minor - 1] = NULL;
 547                 /* Return minor number to the pool of minors */
 548                 vmem_free(ptms_minor_arena, (void *)(uintptr_t)pt->pt_minor, 1);
 549                 /* Return pt to the cache */
 550                 kmem_cache_free(ptms_cache, pt);
 551         }
 552         mutex_exit(&ptms_lock);
 553 }
 554 
 555 /*
 556  * Allocate another slot table twice as large as the original one (limited to
 557  * global maximum). Migrate all pt to the new slot table and free the original
 558  * one. Create more /devices entries for new devices.
 559  */
 560 static minor_t
 561 ptms_grow()
 562 {
 563         minor_t old_size = ptms_nslots;
 564         minor_t delta = MIN(pt_maxdelta, old_size);
 565         minor_t new_size = old_size + delta;
 566         struct pt_ttys **ptms_old = ptms_slots;
 567         struct pt_ttys **ptms_new;
 568         void  *vaddr;                   /* vmem_add return value */
 569 
 570         ASSERT(MUTEX_HELD(&ptms_lock));
 571 
 572         DDBG("ptmopen(%d): need to grow\n", (int)ptms_inuse);
 573 
 574         /* Allocate new ptms array */
 575         ptms_new = kmem_zalloc(new_size * sizeof (struct pt_ttys *),
 576             KM_NOSLEEP);
 577         if (ptms_new == NULL)
 578                 return ((minor_t)0);
 579 
 580         /* Increase clone index space */
 581         vaddr = vmem_add(ptms_minor_arena, (void *)(uintptr_t)(old_size + 1),
 582             new_size - old_size, VM_NOSLEEP);
 583 
 584         if (vaddr == NULL) {
 585                 kmem_free(ptms_new, new_size * sizeof (struct pt_ttys *));
 586                 return ((minor_t)0);
 587         }
 588 
 589         /* Migrate pt entries to a new location */
 590         ptms_nslots = new_size;
 591         bcopy(ptms_old, ptms_new, old_size * sizeof (struct pt_ttys *));
 592         ptms_slots = ptms_new;
 593         kmem_free(ptms_old, old_size * sizeof (struct pt_ttys *));
 594 
 595         /* Allocate minor number and return it */
 596         return ((minor_t)(uintptr_t)
 597             vmem_alloc(ptms_minor_arena, 1, VM_NOSLEEP));
 598 }
 599 
 600 /*ARGSUSED*/
 601 static int
 602 ptms_constructor(void *maddr, void *arg, int kmflags)
 603 {
 604         struct pt_ttys *pt = maddr;
 605 
 606         pt->pts_rdq = NULL;
 607         pt->ptm_rdq = NULL;
 608         pt->pt_nullmsg = NULL;
 609         pt->pt_pid = 0;
 610         pt->pt_minor = 0;
 611         pt->pt_refcnt = 0;
 612         pt->pt_state = 0;
 613         pt->pt_zoneid = GLOBAL_ZONEID;
 614 
 615         cv_init(&pt->pt_cv, NULL, CV_DEFAULT, NULL);
 616         mutex_init(&pt->pt_lock, NULL, MUTEX_DEFAULT, NULL);
 617         return (0);
 618 }
 619 
 620 /*ARGSUSED*/
 621 static void
 622 ptms_destructor(void *maddr, void *arg)
 623 {
 624         struct pt_ttys *pt = maddr;
 625 
 626         ASSERT(pt->pt_refcnt == 0);
 627         ASSERT(pt->pt_state == 0);
 628         ASSERT(pt->ptm_rdq == NULL);
 629         ASSERT(pt->pts_rdq == NULL);
 630 
 631         mutex_destroy(&pt->pt_lock);
 632         cv_destroy(&pt->pt_cv);
 633 }
 634 
 635 #ifdef DEBUG
 636 void
 637 ptms_log(char *str, uint_t arg)
 638 {
 639         if (ptms_debug) {
 640                 if (ptms_debug & 2)
 641                         cmn_err(CE_CONT, str, arg);
 642                 if (ptms_debug & 4)
 643                         (void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
 644                             str, arg);
 645                 else
 646                         (void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg);
 647         }
 648 }
 649 
 650 void
 651 ptms_logp(char *str, uintptr_t arg)
 652 {
 653         if (ptms_debug) {
 654                 if (ptms_debug & 2)
 655                         cmn_err(CE_CONT, str, arg);
 656                 if (ptms_debug & 4)
 657                         (void) strlog(PTMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
 658                             str, arg);
 659                 else
 660                         (void) strlog(PTMOD_ID, -1, 0, SL_TRACE, str, arg);
 661         }
 662 }
 663 #endif