Print this page
14249 pseudo-terminal nomenclature should reflect POSIX
Change-Id: Ib4a3cef899ff4c71b09cb0dc6878863c5e8357bc
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/io/ptm.c
+++ new/usr/src/uts/common/io/ptm.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
↓ open down ↓ |
18 lines elided |
↑ open up ↑ |
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 */
24 24 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
25 25 /* All Rights Reserved */
26 26
27 27 /*
28 28 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
29 + * Copyright 2021 Oxide Computer Company
29 30 */
30 31
31 32 /*
32 - * Pseudo Terminal Master Driver.
33 + * PSEUDO-TERMINAL MANAGER DRIVER (PTM)
33 34 *
34 - * The pseudo-tty subsystem simulates a terminal connection, where the master
35 - * side represents the terminal and the slave represents the user process's
36 - * special device end point. The master device is set up as a cloned device
37 - * where its major device number is the major for the clone device and its minor
38 - * device number is the major for the ptm driver. There are no nodes in the file
39 - * system for master devices. The master pseudo driver is opened using the
40 - * open(2) system call with /dev/ptmx as the device parameter. The clone open
41 - * finds the next available minor device for the ptm major device.
35 + * The pseudo-terminal subsystem simulates a terminal connection, where the
36 + * manager side represents the terminal and the subsidiary represents the user
37 + * process's special device end point. The manager device is set up as a
38 + * cloned device where its major device number is the major for the clone
39 + * device and its minor device number is the major for the ptm driver. There
40 + * are no nodes in the file system for manager devices. The manager pseudo
41 + * driver is opened using the open(2) system call with /dev/ptmx as the device
42 + * parameter. The clone open finds the next available minor device for the ptm
43 + * major device.
42 44 *
43 - * A master device is available only if it and its corresponding slave device
44 - * are not already open. When the master device is opened, the corresponding
45 - * slave device is automatically locked out. Only one open is allowed on a
46 - * master device. Multiple opens are allowed on the slave device. After both
47 - * the master and slave have been opened, the user has two file descriptors
48 - * which are the end points of a full duplex connection composed of two streams
49 - * which are automatically connected at the master and slave drivers. The user
50 - * may then push modules onto either side of the stream pair.
45 + * A manager device is available only if it and its corresponding subsidiary
46 + * device are not already open. When the manager device is opened, the
47 + * corresponding subsidiary device is automatically locked out. Only one open
48 + * is allowed on a manager device. Multiple opens are allowed on the
49 + * subsidiary device. After both the manager and subsidiary have been opened,
50 + * the user has two file descriptors which are the end points of a full duplex
51 + * connection composed of two streams which are automatically connected at the
52 + * manager and subsidiary drivers. The user may then push modules onto either
53 + * side of the stream pair.
51 54 *
52 - * The master and slave drivers pass all messages to their adjacent queues.
53 - * Only the M_FLUSH needs some processing. Because the read queue of one side
54 - * is connected to the write queue of the other, the FLUSHR flag is changed to
55 - * the FLUSHW flag and vice versa. When the master device is closed an M_HANGUP
56 - * message is sent to the slave device which will render the device
57 - * unusable. The process on the slave side gets the EIO when attempting to write
58 - * on that stream but it will be able to read any data remaining on the stream
59 - * head read queue. When all the data has been read, read() returns 0
60 - * indicating that the stream can no longer be used. On the last close of the
61 - * slave device, a 0-length message is sent to the master device. When the
62 - * application on the master side issues a read() or getmsg() and 0 is returned,
63 - * the user of the master device decides whether to issue a close() that
64 - * dismantles the pseudo-terminal subsystem. If the master device is not closed,
65 - * the pseudo-tty subsystem will be available to another user to open the slave
66 - * device.
55 + * The manager and subsidiary drivers pass all messages to their adjacent
56 + * queues. Only the M_FLUSH needs some processing. Because the read queue of
57 + * one side is connected to the write queue of the other, the FLUSHR flag is
58 + * changed to the FLUSHW flag and vice versa. When the manager device is
59 + * closed an M_HANGUP message is sent to the subsidiary device which will
60 + * render the device unusable. The process on the subsidiary side gets an EIO
61 + * error when attempting to write on that stream but it will be able to read
62 + * any data remaining on the stream head read queue. When all the data has
63 + * been read, read() returns 0 indicating that the stream can no longer be
64 + * used. On the last close of the subsidiary device, a 0-length message is
65 + * sent to the manager device. When the application on the manager side issues
66 + * a read() or getmsg() and 0 is returned, the user of the manager device
67 + * decides whether to issue a close() that dismantles the pseudo-terminal
68 + * subsystem. If the manager device is not closed, the pseudo-terminal
69 + * subsystem will be available to another user to open the subsidiary device.
67 70 *
68 - * If O_NONBLOCK or O_NDELAY is set, read on the master side returns -1 with
71 + * If O_NONBLOCK or O_NDELAY is set, read on the manager side returns -1 with
69 72 * errno set to EAGAIN if no data is available, and write returns -1 with errno
70 73 * set to EAGAIN if there is internal flow control.
71 74 *
72 - * IOCTLS:
73 75 *
74 - * ISPTM: determines whether the file descriptor is that of an open master
75 - * device. Return code of zero indicates that the file descriptor
76 - * represents master device.
76 + * IOCTLS
77 77 *
78 - * UNLKPT: unlocks the master and slave devices. It returns 0 on success. On
79 - * failure, the errno is set to EINVAL indicating that the master
80 - * device is not open.
78 + * ISPTM
79 + * Determines whether the file descriptor is that of an open
80 + * manager device. Return code of zero indicates that the file
81 + * descriptor represents a manager device.
81 82 *
82 - * ZONEPT: sets the zone membership of the associated pts device.
83 + * UNLKPT
84 + * Unlocks the manager and subsidiary devices. It returns 0 on
85 + * success. On failure, the errno is set to EINVAL indicating that
86 + * the manager device is not open.
83 87 *
84 - * GRPPT: sets the group owner of the associated pts device.
88 + * ZONEPT
89 + * Sets the zone membership of the associated subsidiary device.
85 90 *
86 - * Synchronization:
91 + * GRPPT
92 + * Sets the group owner of the associated subsidiary device.
87 93 *
88 - * All global data synchronization between ptm/pts is done via global
89 - * ptms_lock mutex which is initialized at system boot time from
90 - * ptms_initspace (called from space.c).
91 94 *
92 - * Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
93 - * pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
95 + * SYNCHRONIZATION
94 96 *
95 - * PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
96 - * which allow reader locks to be reacquired by the same thread (usual
97 - * reader/writer locks can't be used for that purpose since it is illegal for
98 - * a thread to acquire a lock it already holds, even as a reader). The sole
99 - * purpose of these macros is to guarantee that the peer queue will not
100 - * disappear (due to closing peer) while it is used. It is safe to use
101 - * PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
102 - * they are not real locks but reference counts).
97 + * All global data synchronization between ptm/pts is done via global ptms_lock
98 + * mutex which is initialized at system boot time from ptms_initspace (called
99 + * from space.c).
103 100 *
104 - * PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave
105 - * open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
106 - * be set to appropriate queues *after* qprocson() is called during open (to
107 - * prevent peer from accessing the queue with incomplete plumbing) and set to
108 - * NULL before qprocsoff() is called during close.
101 + * Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
102 + * pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
109 103 *
110 - * The pt_nullmsg field is only used in open/close routines and it is also
111 - * protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
112 - * holds.
104 + * PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
105 + * which allow reader locks to be reacquired by the same thread (usual
106 + * reader/writer locks can't be used for that purpose since it is illegal for a
107 + * thread to acquire a lock it already holds, even as a reader). The sole
108 + * purpose of these macros is to guarantee that the peer queue will not
109 + * disappear (due to closing peer) while it is used. It is safe to use
110 + * PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
111 + * they are not real locks but reference counts).
113 112 *
114 - * Lock Ordering:
113 + * PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in manager/subsidiary
114 + * open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
115 + * be set to appropriate queues *after* qprocson() is called during open (to
116 + * prevent peer from accessing the queue with incomplete plumbing) and set to
117 + * NULL before qprocsoff() is called during close.
115 118 *
116 - * If both ptms_lock and per-pty lock should be held, ptms_lock should always
117 - * be entered first, followed by per-pty lock.
119 + * The pt_nullmsg field is only used in open/close routines and it is also
120 + * protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
121 + * holds.
118 122 *
119 - * See ptms.h, pts.c and ptms_conf.c for more information.
123 + *
124 + * LOCK ORDERING
125 + *
126 + * If both ptms_lock and per-pty lock should be held, ptms_lock should always
127 + * be entered first, followed by per-pty lock.
128 + *
129 + * See ptms.h, pts.c, and ptms_conf.c for more information.
120 130 */
121 131
122 132 #include <sys/types.h>
123 133 #include <sys/param.h>
124 134 #include <sys/file.h>
125 135 #include <sys/sysmacros.h>
126 136 #include <sys/stream.h>
127 137 #include <sys/stropts.h>
128 138 #include <sys/proc.h>
129 139 #include <sys/errno.h>
130 140 #include <sys/debug.h>
131 141 #include <sys/cmn_err.h>
132 142 #include <sys/ptms.h>
133 143 #include <sys/stat.h>
134 144 #include <sys/strsun.h>
135 145 #include <sys/systm.h>
136 146 #include <sys/modctl.h>
137 147 #include <sys/conf.h>
138 148 #include <sys/ddi.h>
139 149 #include <sys/sunddi.h>
140 150 #include <sys/zone.h>
141 151
142 152 #ifdef DEBUG
143 153 int ptm_debug = 0;
144 154 #define DBG(a) if (ptm_debug) cmn_err(CE_NOTE, a)
↓ open down ↓ |
15 lines elided |
↑ open up ↑ |
145 155 #else
146 156 #define DBG(a)
147 157 #endif
148 158
149 159 static int ptmopen(queue_t *, dev_t *, int, int, cred_t *);
150 160 static int ptmclose(queue_t *, int, cred_t *);
151 161 static int ptmwput(queue_t *, mblk_t *);
152 162 static int ptmrsrv(queue_t *);
153 163 static int ptmwsrv(queue_t *);
154 164
155 -/*
156 - * Master Stream Pseudo Terminal Module: stream data structure definitions
157 - */
158 -
159 165 static struct module_info ptm_info = {
160 166 0xdead,
161 167 "ptm",
162 168 0,
163 169 512,
164 170 512,
165 171 128
166 172 };
167 173
168 174 static struct qinit ptmrint = {
169 175 NULL,
170 176 ptmrsrv,
171 177 ptmopen,
172 178 ptmclose,
173 179 NULL,
174 180 &ptm_info,
175 181 NULL
176 182 };
177 183
178 184 static struct qinit ptmwint = {
179 185 ptmwput,
180 186 ptmwsrv,
181 187 NULL,
182 188 NULL,
183 189 NULL,
184 190 &ptm_info,
185 191 NULL
186 192 };
187 193
188 194 static struct streamtab ptminfo = {
189 195 &ptmrint,
190 196 &ptmwint,
191 197 NULL,
192 198 NULL
193 199 };
194 200
195 201 static int ptm_attach(dev_info_t *, ddi_attach_cmd_t);
196 202 static int ptm_detach(dev_info_t *, ddi_detach_cmd_t);
197 203 static int ptm_devinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
198 204
199 205 static dev_info_t *ptm_dip; /* private devinfo pointer */
200 206
201 207 /*
↓ open down ↓ |
33 lines elided |
↑ open up ↑ |
202 208 * this will define (struct cb_ops cb_ptm_ops) and (struct dev_ops ptm_ops)
203 209 */
204 210 DDI_DEFINE_STREAM_OPS(ptm_ops, nulldev, nulldev, ptm_attach, ptm_detach,
205 211 nodev, ptm_devinfo, D_MP, &ptminfo, ddi_quiesce_not_supported);
206 212
207 213 /*
208 214 * Module linkage information for the kernel.
209 215 */
210 216
211 217 static struct modldrv modldrv = {
212 - &mod_driverops, /* Type of module. This one is a pseudo driver */
213 - "Master streams driver 'ptm'",
214 - &ptm_ops, /* driver ops */
218 + &mod_driverops,
219 + "Pseudo-Terminal Manager Driver",
220 + &ptm_ops,
215 221 };
216 222
217 223 static struct modlinkage modlinkage = {
218 224 MODREV_1,
219 225 &modldrv,
220 226 NULL
221 227 };
222 228
223 229 int
224 230 _init(void)
225 231 {
226 232 int rc;
227 233
228 234 if ((rc = mod_install(&modlinkage)) == 0)
229 235 ptms_init();
230 236 return (rc);
231 237 }
232 238
233 239 int
234 240 _fini(void)
235 241 {
236 242 return (mod_remove(&modlinkage));
237 243 }
238 244
239 245 int
240 246 _info(struct modinfo *modinfop)
241 247 {
242 248 return (mod_info(&modlinkage, modinfop));
243 249 }
244 250
245 251 static int
246 252 ptm_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
247 253 {
248 254 if (cmd != DDI_ATTACH)
249 255 return (DDI_FAILURE);
250 256
251 257 if (ddi_create_minor_node(devi, "ptmajor", S_IFCHR,
252 258 0, DDI_PSEUDO, 0) == DDI_FAILURE) {
253 259 ddi_remove_minor_node(devi, NULL);
254 260 return (DDI_FAILURE);
255 261 }
256 262 if (ddi_create_minor_node(devi, "ptmx", S_IFCHR,
257 263 0, DDI_PSEUDO, CLONE_DEV) == DDI_FAILURE) {
258 264 ddi_remove_minor_node(devi, NULL);
259 265 return (DDI_FAILURE);
260 266 }
261 267 ptm_dip = devi;
262 268
263 269 return (DDI_SUCCESS);
264 270 }
265 271
↓ open down ↓ |
41 lines elided |
↑ open up ↑ |
266 272 static int
267 273 ptm_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
268 274 {
269 275 if (cmd != DDI_DETACH)
270 276 return (DDI_FAILURE);
271 277
272 278 ddi_remove_minor_node(devi, NULL);
273 279 return (DDI_SUCCESS);
274 280 }
275 281
276 -/*ARGSUSED*/
277 282 static int
278 283 ptm_devinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
279 284 void **result)
280 285 {
281 286 int error;
282 287
283 288 switch (infocmd) {
284 289 case DDI_INFO_DEVT2DEVINFO:
285 290 if (ptm_dip == NULL) {
286 291 error = DDI_FAILURE;
287 292 } else {
288 293 *result = (void *)ptm_dip;
289 294 error = DDI_SUCCESS;
290 295 }
291 296 break;
292 297 case DDI_INFO_DEVT2INSTANCE:
↓ open down ↓ |
6 lines elided |
↑ open up ↑ |
293 298 *result = (void *)0;
294 299 error = DDI_SUCCESS;
295 300 break;
296 301 default:
297 302 error = DDI_FAILURE;
298 303 }
299 304 return (error);
300 305 }
301 306
302 307
303 -/* ARGSUSED */
304 308 /*
305 - * Open a minor of the master device. Store the write queue pointer and set the
306 - * pt_state field to (PTMOPEN | PTLOCK).
309 + * Open a minor of the manager device. Store the write queue pointer and set
310 + * the pt_state field to (PTMOPEN | PTLOCK).
307 311 * This code will work properly with both clone opens and direct opens of the
308 - * master device.
312 + * manager device.
309 313 */
310 314 static int
311 315 ptmopen(
312 316 queue_t *rqp, /* pointer to the read side queue */
313 317 dev_t *devp, /* pointer to stream tail's dev */
314 318 int oflag, /* the user open(2) supplied flags */
315 319 int sflag, /* open state flag */
316 320 cred_t *credp) /* credentials */
317 321 {
318 322 struct pt_ttys *ptmp;
319 323 mblk_t *mop; /* ptr to a setopts message block */
320 324 struct stroptions *sop;
321 325 minor_t dminor = getminor(*devp);
↓ open down ↓ |
3 lines elided |
↑ open up ↑ |
322 326
323 327 /* Allow reopen */
324 328 if (rqp->q_ptr != NULL)
325 329 return (0);
326 330
327 331 if (sflag & MODOPEN)
328 332 return (ENXIO);
329 333
330 334 if (!(sflag & CLONEOPEN) && dminor != 0) {
331 335 /*
332 - * This is a direct open to specific master device through an
336 + * This is a direct open to specific manager device through an
333 337 * artificially created entry with specific minor in
334 - * /dev/directory. Such behavior is not supported.
338 + * /dev/directory. Such behavior is not supported.
335 339 */
336 340 return (ENXIO);
337 341 }
338 342
339 343 /*
340 - * The master open requires that the slave be attached
341 - * before it returns so that attempts to open the slave will
342 - * succeeed
344 + * The manager open requires that the subsidiary be attached before it
345 + * returns so that attempts to open the subsidiary will succeeed
343 346 */
344 - if (ptms_attach_slave() != 0) {
347 + if (ptms_attach_subsidiary() != 0) {
345 348 return (ENXIO);
346 349 }
347 350
348 351 mop = allocb(sizeof (struct stroptions), BPRI_MED);
349 352 if (mop == NULL) {
350 353 DDBG("ptmopen(): mop allocation failed\n", 0);
351 354 return (ENOMEM);
352 355 }
353 356
354 357 if ((ptmp = pt_ttys_alloc()) == NULL) {
355 358 DDBG("ptmopen(): pty allocation failed\n", 0);
356 359 freemsg(mop);
357 360 return (ENOMEM);
358 361 }
↓ open down ↓ |
4 lines elided |
↑ open up ↑ |
359 362
360 363 dminor = ptmp->pt_minor;
361 364
362 365 DDBGP("ptmopen(): allocated ptmp %p\n", (uintptr_t)ptmp);
363 366 DDBG("ptmopen(): allocated minor %d\n", dminor);
364 367
365 368 WR(rqp)->q_ptr = rqp->q_ptr = ptmp;
366 369
367 370 qprocson(rqp);
368 371
369 - /* Allow slave to send messages to master */
372 + /* Allow subsidiary to send messages to manager */
370 373 PT_ENTER_WRITE(ptmp);
371 374 ptmp->ptm_rdq = rqp;
372 375 PT_EXIT_WRITE(ptmp);
373 376
374 377 /*
375 378 * set up hi/lo water marks on stream head read queue
376 379 * and add controlling tty if not set
377 380 */
378 381 mop->b_datap->db_type = M_SETOPTS;
379 382 mop->b_wptr += sizeof (struct stroptions);
380 383 sop = (struct stroptions *)mop->b_rptr;
381 384 if (oflag & FNOCTTY)
382 385 sop->so_flags = SO_HIWAT | SO_LOWAT;
383 386 else
384 387 sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY;
385 388 sop->so_hiwat = _TTY_BUFSIZ;
386 389 sop->so_lowat = 256;
387 390 putnext(rqp, mop);
388 391
389 392 /*
↓ open down ↓ |
10 lines elided |
↑ open up ↑ |
390 393 * The input, devp, is a major device number, the output is put
391 394 * into the same parm as a major,minor pair.
392 395 */
393 396 *devp = makedevice(getmajor(*devp), dminor);
394 397
395 398 return (0);
396 399 }
397 400
398 401
399 402 /*
400 - * Find the address to private data identifying the slave's write queue.
401 - * Send a hang-up message up the slave's read queue to designate the
402 - * master/slave pair is tearing down. Uattach the master and slave by
403 - * nulling out the write queue fields in the private data structure.
404 - * Finally, unlock the master/slave pair and mark the master as closed.
403 + * Find the address to private data identifying the subsidiary's write queue.
404 + * Send a hang-up message up the subsidiary's read queue to designate the
405 + * manager/subsidiary pair is tearing down. Uattach the manager and subsidiary
406 + * by nulling out the write queue fields in the private data structure.
407 + * Finally, unlock the manager/subsidiary pair and mark the manager as closed.
405 408 */
406 -/*ARGSUSED1*/
407 409 static int
408 410 ptmclose(queue_t *rqp, int flag, cred_t *credp)
409 411 {
410 412 struct pt_ttys *ptmp;
411 413 queue_t *pts_rdq;
412 414
413 415 ASSERT(rqp->q_ptr);
414 416
415 417 ptmp = (struct pt_ttys *)rqp->q_ptr;
416 418 PT_ENTER_READ(ptmp);
417 419 if (ptmp->pts_rdq) {
418 420 pts_rdq = ptmp->pts_rdq;
419 421 if (pts_rdq->q_next) {
420 - DBG(("send hangup message to slave\n"));
422 + DBG(("send hangup message to subsidiary\n"));
421 423 (void) putnextctl(pts_rdq, M_HANGUP);
422 424 }
423 425 }
424 426 PT_EXIT_READ(ptmp);
425 427 /*
426 428 * ptm_rdq should be cleared before call to qprocsoff() to prevent pts
427 429 * write procedure to attempt using ptm_rdq after qprocsoff.
428 430 */
429 431 PT_ENTER_WRITE(ptmp);
430 432 ptmp->ptm_rdq = NULL;
431 433 freemsg(ptmp->pt_nullmsg);
432 434 ptmp->pt_nullmsg = NULL;
433 435 /*
434 - * qenable slave side write queue so that it can flush
435 - * its messages as master's read queue is going away
436 + * qenable subsidiary side write queue so that it can flush
437 + * its messages as manager's read queue is going away
436 438 */
437 439 if (ptmp->pts_rdq)
438 440 qenable(WR(ptmp->pts_rdq));
439 441 PT_EXIT_WRITE(ptmp);
440 442
441 443 qprocsoff(rqp);
442 444
443 445 /* Finish the close */
444 446 rqp->q_ptr = NULL;
445 447 WR(rqp)->q_ptr = NULL;
446 448
447 449 ptms_close(ptmp, PTMOPEN | PTLOCK);
448 450
449 451 return (0);
450 452 }
451 453
452 454 /*
453 455 * The wput procedure will only handle ioctl and flush messages.
454 456 */
455 457 static int
456 458 ptmwput(queue_t *qp, mblk_t *mp)
457 459 {
458 460 struct pt_ttys *ptmp;
↓ open down ↓ |
13 lines elided |
↑ open up ↑ |
459 461 struct iocblk *iocp;
460 462
461 463 DBG(("entering ptmwput\n"));
462 464 ASSERT(qp->q_ptr);
463 465
464 466 ptmp = (struct pt_ttys *)qp->q_ptr;
465 467 PT_ENTER_READ(ptmp);
466 468
467 469 switch (mp->b_datap->db_type) {
468 470 /*
469 - * if write queue request, flush master's write
470 - * queue and send FLUSHR up slave side. If read
471 - * queue request, convert to FLUSHW and putnext().
471 + * If this is a write queue request, flush manager's write queue and
472 + * send FLUSHR up subsidiary side. If it is a read queue request,
473 + * convert to FLUSHW and putnext().
472 474 */
473 475 case M_FLUSH:
474 476 {
475 477 unsigned char flush_flg = 0;
476 478
477 479 DBG(("ptm got flush request\n"));
478 480 if (*mp->b_rptr & FLUSHW) {
479 481 DBG(("got FLUSHW, flush ptm write Q\n"));
480 - if (*mp->b_rptr & FLUSHBAND)
482 + if (*mp->b_rptr & FLUSHBAND) {
481 483 /*
482 484 * if it is a FLUSHBAND, do flushband.
483 485 */
484 486 flushband(qp, *(mp->b_rptr + 1),
485 487 FLUSHDATA);
486 - else
488 + } else {
487 489 flushq(qp, FLUSHDATA);
490 + }
488 491 flush_flg = (*mp->b_rptr & ~FLUSHW) | FLUSHR;
489 492 }
490 493 if (*mp->b_rptr & FLUSHR) {
491 494 DBG(("got FLUSHR, set FLUSHW\n"));
492 495 flush_flg |= (*mp->b_rptr & ~FLUSHR) | FLUSHW;
493 496 }
494 497 if (flush_flg != 0 && ptmp->pts_rdq &&
495 498 !(ptmp->pt_state & PTLOCK)) {
496 499 DBG(("putnext to pts\n"));
497 500 *mp->b_rptr = flush_flg;
498 501 putnext(ptmp->pts_rdq, mp);
499 - } else
502 + } else {
500 503 freemsg(mp);
504 + }
501 505 break;
502 506 }
503 507
504 508 case M_IOCTL:
505 509 iocp = (struct iocblk *)mp->b_rptr;
506 510 switch (iocp->ioc_cmd) {
507 511 default:
508 512 if ((ptmp->pt_state & PTLOCK) ||
509 513 (ptmp->pts_rdq == NULL)) {
510 - DBG(("got M_IOCTL but no slave\n"));
514 + DBG(("got M_IOCTL but no subsidiary\n"));
511 515 miocnak(qp, mp, 0, EINVAL);
512 516 PT_EXIT_READ(ptmp);
513 517 return (0);
514 518 }
515 519 (void) putq(qp, mp);
516 520 break;
517 521 case UNLKPT:
518 522 mutex_enter(&ptmp->pt_lock);
519 523 ptmp->pt_state &= ~PTLOCK;
520 524 mutex_exit(&ptmp->pt_lock);
521 525 /*FALLTHROUGH*/
522 526 case ISPTM:
523 527 DBG(("ack the UNLKPT/ISPTM\n"));
524 528 miocack(qp, mp, 0, 0);
525 529 break;
526 530 case PTSSTTY:
527 531 mutex_enter(&ptmp->pt_lock);
528 532 ptmp->pt_state |= PTSTTY;
529 533 mutex_exit(&ptmp->pt_lock);
530 534 DBG(("ack PTSSTTY\n"));
531 535 miocack(qp, mp, 0, 0);
532 536 break;
533 537 case ZONEPT:
534 538 {
535 539 zoneid_t z;
536 540 int error;
537 541
538 542 if ((error = drv_priv(iocp->ioc_cr)) != 0) {
539 543 miocnak(qp, mp, 0, error);
540 544 break;
541 545 }
542 546 if ((error = miocpullup(mp, sizeof (zoneid_t))) != 0) {
543 547 miocnak(qp, mp, 0, error);
544 548 break;
545 549 }
546 550 z = *((zoneid_t *)mp->b_cont->b_rptr);
547 551 if (z < MIN_ZONEID || z > MAX_ZONEID) {
548 552 miocnak(qp, mp, 0, EINVAL);
549 553 break;
550 554 }
551 555
552 556 mutex_enter(&ptmp->pt_lock);
553 557 ptmp->pt_zoneid = z;
554 558 mutex_exit(&ptmp->pt_lock);
555 559 miocack(qp, mp, 0, 0);
556 560 break;
557 561 }
558 562 case OWNERPT:
559 563 {
560 564 pt_own_t *ptop;
561 565 int error;
562 566 zone_t *zone;
563 567
564 568 if ((error = miocpullup(mp, sizeof (pt_own_t))) != 0) {
565 569 miocnak(qp, mp, 0, error);
566 570 break;
567 571 }
568 572
569 573 zone = zone_find_by_id(ptmp->pt_zoneid);
570 574 ptop = (pt_own_t *)mp->b_cont->b_rptr;
571 575
572 576 if (!VALID_UID(ptop->pto_ruid, zone) ||
573 577 !VALID_GID(ptop->pto_rgid, zone)) {
574 578 zone_rele(zone);
575 579 miocnak(qp, mp, 0, EINVAL);
576 580 break;
577 581 }
578 582 zone_rele(zone);
579 583 mutex_enter(&ptmp->pt_lock);
↓ open down ↓ |
59 lines elided |
↑ open up ↑ |
580 584 ptmp->pt_ruid = ptop->pto_ruid;
581 585 ptmp->pt_rgid = ptop->pto_rgid;
582 586 mutex_exit(&ptmp->pt_lock);
583 587 miocack(qp, mp, 0, 0);
584 588 break;
585 589 }
586 590 }
587 591 break;
588 592
589 593 case M_READ:
590 - /* Caused by ldterm - can not pass to slave */
594 + /* Caused by ldterm - can not pass to subsidiary */
591 595 freemsg(mp);
592 596 break;
593 597
594 598 /*
595 - * send other messages to slave
599 + * Send other messages to the subsidiary:
596 600 */
597 601 default:
598 - if ((ptmp->pt_state & PTLOCK) || (ptmp->pts_rdq == NULL)) {
599 - DBG(("got msg. but no slave\n"));
602 + if ((ptmp->pt_state & PTLOCK) || (ptmp->pts_rdq == NULL)) {
603 + DBG(("got msg. but no subsidiary\n"));
600 604 mp = mexchange(NULL, mp, 2, M_ERROR, -1);
601 605 if (mp != NULL) {
602 606 mp->b_rptr[0] = NOERROR;
603 607 mp->b_rptr[1] = EINVAL;
604 608 qreply(qp, mp);
605 609 }
606 610 PT_EXIT_READ(ptmp);
607 611 return (0);
608 612 }
609 - DBG(("put msg on master's write queue\n"));
613 + DBG(("put msg on manager's write queue\n"));
610 614 (void) putq(qp, mp);
611 615 break;
612 616 }
613 617 DBG(("return from ptmwput()\n"));
614 618 PT_EXIT_READ(ptmp);
615 619 return (0);
616 620 }
617 621
618 622
619 623 /*
620 - * enable the write side of the slave. This triggers the
621 - * slave to send any messages queued on its write side to
622 - * the read side of this master.
624 + * Enable the write side of the subsidiary. This triggers the subsidiary to
625 + * send any messages queued on its write side to the read side of this manager.
623 626 */
624 627 static int
625 628 ptmrsrv(queue_t *qp)
626 629 {
627 630 struct pt_ttys *ptmp;
628 631
629 632 DBG(("entering ptmrsrv\n"));
630 633 ASSERT(qp->q_ptr);
631 634
632 635 ptmp = (struct pt_ttys *)qp->q_ptr;
633 636 PT_ENTER_READ(ptmp);
↓ open down ↓ |
1 lines elided |
↑ open up ↑ |
634 637 if (ptmp->pts_rdq) {
635 638 qenable(WR(ptmp->pts_rdq));
636 639 }
637 640 PT_EXIT_READ(ptmp);
638 641 DBG(("leaving ptmrsrv\n"));
639 642 return (0);
640 643 }
641 644
642 645
643 646 /*
644 - * If there are messages on this queue that can be sent to
645 - * slave, send them via putnext(). Else, if queued messages
646 - * cannot be sent, leave them on this queue. If priority
647 - * messages on this queue, send them to slave no matter what.
647 + * If there are messages on this queue that can be sent to subsidiary, send
648 + * them via putnext(). Otherwise, if queued messages cannot be sent, leave
649 + * them on this queue. If priority messages on this queue, send them to the
650 + * subsidiary no matter what.
648 651 */
649 652 static int
650 653 ptmwsrv(queue_t *qp)
651 654 {
652 655 struct pt_ttys *ptmp;
653 656 mblk_t *mp;
654 657
655 658 DBG(("entering ptmwsrv\n"));
656 659 ASSERT(qp->q_ptr);
657 660
658 661 ptmp = (struct pt_ttys *)qp->q_ptr;
659 662
660 663 if ((mp = getq(qp)) == NULL) {
661 664 /* If there are no messages there's nothing to do. */
662 665 DBG(("leaving ptmwsrv (no messages)\n"));
663 666 return (0);
664 667 }
665 668
666 669 PT_ENTER_READ(ptmp);
667 670 if ((ptmp->pt_state & PTLOCK) || (ptmp->pts_rdq == NULL)) {
668 - DBG(("in master write srv proc but no slave\n"));
671 + DBG(("in manager write srv proc but no subsidiary\n"));
669 672 /*
670 673 * Free messages on the write queue and send
671 674 * NAK for any M_IOCTL type messages to wakeup
672 675 * the user process waiting for ACK/NAK from
673 676 * the ioctl invocation
674 677 */
675 678 do {
676 679 if (mp->b_datap->db_type == M_IOCTL)
677 680 miocnak(qp, mp, 0, EINVAL);
678 681 else
679 682 freemsg(mp);
680 683 } while ((mp = getq(qp)) != NULL);
681 684 flushq(qp, FLUSHALL);
682 685
↓ open down ↓ |
4 lines elided |
↑ open up ↑ |
683 686 mp = mexchange(NULL, NULL, 2, M_ERROR, -1);
684 687 if (mp != NULL) {
685 688 mp->b_rptr[0] = NOERROR;
686 689 mp->b_rptr[1] = EINVAL;
687 690 qreply(qp, mp);
688 691 }
689 692 PT_EXIT_READ(ptmp);
690 693 return (0);
691 694 }
692 695 /*
693 - * while there are messages on this write queue...
696 + * While there are messages on this write queue...
694 697 */
695 698 do {
696 699 /*
697 - * if don't have control message and cannot put
698 - * msg. on slave's read queue, put it back on
699 - * this queue.
700 + * If this is not a control message, and we cannot put messages
701 + * on the subsidiary's read queue, put it back on this queue.
700 702 */
701 703 if (mp->b_datap->db_type <= QPCTL &&
702 704 !bcanputnext(ptmp->pts_rdq, mp->b_band)) {
703 705 DBG(("put msg. back on queue\n"));
704 706 (void) putbq(qp, mp);
705 707 break;
706 708 }
707 709 /*
708 - * else send the message up slave's stream
710 + * Otherwise send the message up subsidiary's stream
709 711 */
710 - DBG(("send message to slave\n"));
712 + DBG(("send message to subsidiary\n"));
711 713 putnext(ptmp->pts_rdq, mp);
712 714 } while ((mp = getq(qp)) != NULL);
713 715 DBG(("leaving ptmwsrv\n"));
714 716 PT_EXIT_READ(ptmp);
715 717 return (0);
716 718 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX