Print this page
14249 pseudo-terminal nomenclature should reflect POSIX
Change-Id: Ib4a3cef899ff4c71b09cb0dc6878863c5e8357bc


   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 /*      Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T     */
  25 /*        All Rights Reserved   */
  26 
  27 /*
  28  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.

  29  */
  30 
  31 /*
  32  * Pseudo Terminal Master Driver.
  33  *
  34  * The pseudo-tty subsystem simulates a terminal connection, where the master
  35  * side represents the terminal and the slave represents the user process's
  36  * special device end point. The master device is set up as a cloned device
  37  * where its major device number is the major for the clone device and its minor
  38  * device number is the major for the ptm driver. There are no nodes in the file
  39  * system for master devices. The master pseudo driver is opened using the
  40  * open(2) system call with /dev/ptmx as the device parameter.  The clone open
  41  * finds the next available minor device for the ptm major device.

  42  *
  43  * A master device is available only if it and its corresponding slave device
  44  * are not already open. When the master device is opened, the corresponding
  45  * slave device is automatically locked out. Only one open is allowed on a
  46  * master device.  Multiple opens are allowed on the slave device.  After both
  47  * the master and slave have been opened, the user has two file descriptors
  48  * which are the end points of a full duplex connection composed of two streams
  49  * which are automatically connected at the master and slave drivers. The user
  50  * may then push modules onto either side of the stream pair.

  51  *
  52  * The master and slave drivers pass all messages to their adjacent queues.
  53  * Only the M_FLUSH needs some processing.  Because the read queue of one side
  54  * is connected to the write queue of the other, the FLUSHR flag is changed to
  55  * the FLUSHW flag and vice versa. When the master device is closed an M_HANGUP
  56  * message is sent to the slave device which will render the device
  57  * unusable. The process on the slave side gets the EIO when attempting to write
  58  * on that stream but it will be able to read any data remaining on the stream
  59  * head read queue.  When all the data has been read, read() returns 0
  60  * indicating that the stream can no longer be used.  On the last close of the
  61  * slave device, a 0-length message is sent to the master device. When the
  62  * application on the master side issues a read() or getmsg() and 0 is returned,
  63  * the user of the master device decides whether to issue a close() that
  64  * dismantles the pseudo-terminal subsystem. If the master device is not closed,
  65  * the pseudo-tty subsystem will be available to another user to open the slave
  66  * device.
  67  *
  68  * If O_NONBLOCK or O_NDELAY is set, read on the master side returns -1 with
  69  * errno set to EAGAIN if no data is available, and write returns -1 with errno
  70  * set to EAGAIN if there is internal flow control.
  71  *
  72  * IOCTLS:
  73  *
  74  *  ISPTM: determines whether the file descriptor is that of an open master
  75  *         device. Return code of zero indicates that the file descriptor
  76  *         represents master device.
  77  *
  78  *  UNLKPT: unlocks the master and slave devices.  It returns 0 on success. On
  79  *          failure, the errno is set to EINVAL indicating that the master
  80  *          device is not open.

  81  *
  82  *  ZONEPT: sets the zone membership of the associated pts device.



  83  *
  84  *  GRPPT:  sets the group owner of the associated pts device.

  85  *
  86  * Synchronization:

  87  *
  88  *   All global data synchronization between ptm/pts is done via global
  89  *   ptms_lock mutex which is initialized at system boot time from
  90  *   ptms_initspace (called from space.c).
  91  *






  92  *   Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
  93  *   pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
  94  *
  95  *   PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
  96  *   which allow reader locks to be reacquired by the same thread (usual
  97  *   reader/writer locks can't be used for that purpose since it is illegal for
  98  *   a thread to acquire a lock it already holds, even as a reader). The sole
  99  *   purpose of these macros is to guarantee that the peer queue will not
 100  *   disappear (due to closing peer) while it is used. It is safe to use
 101  *   PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
 102  *   they are not real locks but reference counts).
 103  *
 104  *   PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave
 105  *   open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
 106  *   be set to appropriate queues *after* qprocson() is called during open (to
 107  *   prevent peer from accessing the queue with incomplete plumbing) and set to
 108  *   NULL before qprocsoff() is called during close.
 109  *
 110  *   The pt_nullmsg field is only used in open/close routines and it is also
 111  *   protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
 112  *   holds.
 113  *
 114  * Lock Ordering:
 115  *


 116  *   If both ptms_lock and per-pty lock should be held, ptms_lock should always
 117  *   be entered first, followed by per-pty lock.
 118  *
 119  * See ptms.h, pts.c and ptms_conf.c for more information.
 120  */
 121 
 122 #include <sys/types.h>
 123 #include <sys/param.h>
 124 #include <sys/file.h>
 125 #include <sys/sysmacros.h>
 126 #include <sys/stream.h>
 127 #include <sys/stropts.h>
 128 #include <sys/proc.h>
 129 #include <sys/errno.h>
 130 #include <sys/debug.h>
 131 #include <sys/cmn_err.h>
 132 #include <sys/ptms.h>
 133 #include <sys/stat.h>
 134 #include <sys/strsun.h>
 135 #include <sys/systm.h>
 136 #include <sys/modctl.h>
 137 #include <sys/conf.h>
 138 #include <sys/ddi.h>
 139 #include <sys/sunddi.h>
 140 #include <sys/zone.h>
 141 
 142 #ifdef DEBUG
 143 int ptm_debug = 0;
 144 #define DBG(a)   if (ptm_debug) cmn_err(CE_NOTE, a)
 145 #else
 146 #define DBG(a)
 147 #endif
 148 
 149 static int ptmopen(queue_t *, dev_t *, int, int, cred_t *);
 150 static int ptmclose(queue_t *, int, cred_t *);
 151 static int ptmwput(queue_t *, mblk_t *);
 152 static int ptmrsrv(queue_t *);
 153 static int ptmwsrv(queue_t *);
 154 
 155 /*
 156  * Master Stream Pseudo Terminal Module: stream data structure definitions
 157  */
 158 
 159 static struct module_info ptm_info = {
 160         0xdead,
 161         "ptm",
 162         0,
 163         512,
 164         512,
 165         128
 166 };
 167 
 168 static struct qinit ptmrint = {
 169         NULL,
 170         ptmrsrv,
 171         ptmopen,
 172         ptmclose,
 173         NULL,
 174         &ptm_info,
 175         NULL
 176 };
 177 
 178 static struct qinit ptmwint = {


 192         NULL
 193 };
 194 
 195 static int ptm_attach(dev_info_t *, ddi_attach_cmd_t);
 196 static int ptm_detach(dev_info_t *, ddi_detach_cmd_t);
 197 static int ptm_devinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
 198 
 199 static dev_info_t       *ptm_dip;               /* private devinfo pointer */
 200 
 201 /*
 202  * this will define (struct cb_ops cb_ptm_ops) and (struct dev_ops ptm_ops)
 203  */
 204 DDI_DEFINE_STREAM_OPS(ptm_ops, nulldev, nulldev, ptm_attach, ptm_detach,
 205     nodev, ptm_devinfo, D_MP, &ptminfo, ddi_quiesce_not_supported);
 206 
 207 /*
 208  * Module linkage information for the kernel.
 209  */
 210 
 211 static struct modldrv modldrv = {
 212         &mod_driverops, /* Type of module.  This one is a pseudo driver */
 213         "Master streams driver 'ptm'",
 214         &ptm_ops,   /* driver ops */
 215 };
 216 
 217 static struct modlinkage modlinkage = {
 218         MODREV_1,
 219         &modldrv,
 220         NULL
 221 };
 222 
 223 int
 224 _init(void)
 225 {
 226         int rc;
 227 
 228         if ((rc = mod_install(&modlinkage)) == 0)
 229                 ptms_init();
 230         return (rc);
 231 }
 232 
 233 int
 234 _fini(void)


 256         if (ddi_create_minor_node(devi, "ptmx", S_IFCHR,
 257             0, DDI_PSEUDO, CLONE_DEV) == DDI_FAILURE) {
 258                 ddi_remove_minor_node(devi, NULL);
 259                 return (DDI_FAILURE);
 260         }
 261         ptm_dip = devi;
 262 
 263         return (DDI_SUCCESS);
 264 }
 265 
 266 static int
 267 ptm_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
 268 {
 269         if (cmd != DDI_DETACH)
 270                 return (DDI_FAILURE);
 271 
 272         ddi_remove_minor_node(devi, NULL);
 273         return (DDI_SUCCESS);
 274 }
 275 
 276 /*ARGSUSED*/
 277 static int
 278 ptm_devinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
 279     void **result)
 280 {
 281         int error;
 282 
 283         switch (infocmd) {
 284         case DDI_INFO_DEVT2DEVINFO:
 285                 if (ptm_dip == NULL) {
 286                         error = DDI_FAILURE;
 287                 } else {
 288                         *result = (void *)ptm_dip;
 289                         error = DDI_SUCCESS;
 290                 }
 291                 break;
 292         case DDI_INFO_DEVT2INSTANCE:
 293                 *result = (void *)0;
 294                 error = DDI_SUCCESS;
 295                 break;
 296         default:
 297                 error = DDI_FAILURE;
 298         }
 299         return (error);
 300 }
 301 
 302 
 303 /* ARGSUSED */
 304 /*
 305  * Open a minor of the master device. Store the write queue pointer and set the
 306  * pt_state field to (PTMOPEN | PTLOCK).
 307  * This code will work properly with both clone opens and direct opens of the
 308  * master device.
 309  */
 310 static int
 311 ptmopen(
 312         queue_t *rqp,           /* pointer to the read side queue */
 313         dev_t   *devp,          /* pointer to stream tail's dev */
 314         int     oflag,          /* the user open(2) supplied flags */
 315         int     sflag,          /* open state flag */
 316         cred_t  *credp)         /* credentials */
 317 {
 318         struct pt_ttys  *ptmp;
 319         mblk_t          *mop;           /* ptr to a setopts message block */
 320         struct stroptions *sop;
 321         minor_t         dminor = getminor(*devp);
 322 
 323         /* Allow reopen */
 324         if (rqp->q_ptr != NULL)
 325                 return (0);
 326 
 327         if (sflag & MODOPEN)
 328                 return (ENXIO);
 329 
 330         if (!(sflag & CLONEOPEN) && dminor != 0) {
 331                 /*
 332                  * This is a direct open to specific master device through an
 333                  * artificially created entry with specific minor in
 334                  * /dev/directory. Such behavior is not supported.
 335                  */
 336                 return (ENXIO);
 337         }
 338 
 339         /*
 340          * The master open requires that the slave be attached
 341          * before it returns so that attempts to open the slave will
 342          * succeeed
 343          */
 344         if (ptms_attach_slave() != 0) {
 345                 return (ENXIO);
 346         }
 347 
 348         mop = allocb(sizeof (struct stroptions), BPRI_MED);
 349         if (mop == NULL) {
 350                 DDBG("ptmopen(): mop allocation failed\n", 0);
 351                 return (ENOMEM);
 352         }
 353 
 354         if ((ptmp = pt_ttys_alloc()) == NULL) {
 355                 DDBG("ptmopen(): pty allocation failed\n", 0);
 356                 freemsg(mop);
 357                 return (ENOMEM);
 358         }
 359 
 360         dminor = ptmp->pt_minor;
 361 
 362         DDBGP("ptmopen(): allocated ptmp %p\n", (uintptr_t)ptmp);
 363         DDBG("ptmopen(): allocated minor %d\n", dminor);
 364 
 365         WR(rqp)->q_ptr = rqp->q_ptr = ptmp;
 366 
 367         qprocson(rqp);
 368 
 369         /* Allow slave to send messages to master */
 370         PT_ENTER_WRITE(ptmp);
 371         ptmp->ptm_rdq = rqp;
 372         PT_EXIT_WRITE(ptmp);
 373 
 374         /*
 375          * set up hi/lo water marks on stream head read queue
 376          * and add controlling tty if not set
 377          */
 378         mop->b_datap->db_type = M_SETOPTS;
 379         mop->b_wptr += sizeof (struct stroptions);
 380         sop = (struct stroptions *)mop->b_rptr;
 381         if (oflag & FNOCTTY)
 382                 sop->so_flags = SO_HIWAT | SO_LOWAT;
 383         else
 384                 sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY;
 385         sop->so_hiwat = _TTY_BUFSIZ;
 386         sop->so_lowat = 256;
 387         putnext(rqp, mop);
 388 
 389         /*
 390          * The input, devp, is a major device number, the output is put
 391          * into the same parm as a major,minor pair.
 392          */
 393         *devp = makedevice(getmajor(*devp), dminor);
 394 
 395         return (0);
 396 }
 397 
 398 
 399 /*
 400  * Find the address to private data identifying the slave's write queue.
 401  * Send a hang-up message up the slave's read queue to designate the
 402  * master/slave pair is tearing down. Uattach the master and slave by
 403  * nulling out the write queue fields in the private data structure.
 404  * Finally, unlock the master/slave pair and mark the master as closed.
 405  */
 406 /*ARGSUSED1*/
 407 static int
 408 ptmclose(queue_t *rqp, int flag, cred_t *credp)
 409 {
 410         struct pt_ttys  *ptmp;
 411         queue_t *pts_rdq;
 412 
 413         ASSERT(rqp->q_ptr);
 414 
 415         ptmp = (struct pt_ttys *)rqp->q_ptr;
 416         PT_ENTER_READ(ptmp);
 417         if (ptmp->pts_rdq) {
 418                 pts_rdq = ptmp->pts_rdq;
 419                 if (pts_rdq->q_next) {
 420                         DBG(("send hangup message to slave\n"));
 421                         (void) putnextctl(pts_rdq, M_HANGUP);
 422                 }
 423         }
 424         PT_EXIT_READ(ptmp);
 425         /*
 426          * ptm_rdq should be cleared before call to qprocsoff() to prevent pts
 427          * write procedure to attempt using ptm_rdq after qprocsoff.
 428          */
 429         PT_ENTER_WRITE(ptmp);
 430         ptmp->ptm_rdq = NULL;
 431         freemsg(ptmp->pt_nullmsg);
 432         ptmp->pt_nullmsg = NULL;
 433         /*
 434          * qenable slave side write queue so that it can flush
 435          * its messages as master's read queue is going away
 436          */
 437         if (ptmp->pts_rdq)
 438                 qenable(WR(ptmp->pts_rdq));
 439         PT_EXIT_WRITE(ptmp);
 440 
 441         qprocsoff(rqp);
 442 
 443         /* Finish the close */
 444         rqp->q_ptr = NULL;
 445         WR(rqp)->q_ptr = NULL;
 446 
 447         ptms_close(ptmp, PTMOPEN | PTLOCK);
 448 
 449         return (0);
 450 }
 451 
 452 /*
 453  * The wput procedure will only handle ioctl and flush messages.
 454  */
 455 static int
 456 ptmwput(queue_t *qp, mblk_t *mp)
 457 {
 458         struct pt_ttys  *ptmp;
 459         struct iocblk   *iocp;
 460 
 461         DBG(("entering ptmwput\n"));
 462         ASSERT(qp->q_ptr);
 463 
 464         ptmp = (struct pt_ttys *)qp->q_ptr;
 465         PT_ENTER_READ(ptmp);
 466 
 467         switch (mp->b_datap->db_type) {
 468         /*
 469          * if write queue request, flush master's write
 470          * queue and send FLUSHR up slave side. If read
 471          * queue request, convert to FLUSHW and putnext().
 472          */
 473         case M_FLUSH:
 474                 {
 475                         unsigned char flush_flg = 0;
 476 
 477                         DBG(("ptm got flush request\n"));
 478                         if (*mp->b_rptr & FLUSHW) {
 479                                 DBG(("got FLUSHW, flush ptm write Q\n"));
 480                                 if (*mp->b_rptr & FLUSHBAND)
 481                                         /*
 482                                          * if it is a FLUSHBAND, do flushband.
 483                                          */
 484                                         flushband(qp, *(mp->b_rptr + 1),
 485                                             FLUSHDATA);
 486                                 else
 487                                         flushq(qp, FLUSHDATA);

 488                                 flush_flg = (*mp->b_rptr & ~FLUSHW) | FLUSHR;
 489                         }
 490                         if (*mp->b_rptr & FLUSHR) {
 491                                 DBG(("got FLUSHR, set FLUSHW\n"));
 492                                 flush_flg |= (*mp->b_rptr & ~FLUSHR) | FLUSHW;
 493                         }
 494                         if (flush_flg != 0 && ptmp->pts_rdq &&
 495                             !(ptmp->pt_state & PTLOCK)) {
 496                                 DBG(("putnext to pts\n"));
 497                                 *mp->b_rptr = flush_flg;
 498                                 putnext(ptmp->pts_rdq, mp);
 499                         } else
 500                                 freemsg(mp);

 501                         break;
 502                 }
 503 
 504         case M_IOCTL:
 505                 iocp = (struct iocblk *)mp->b_rptr;
 506                 switch (iocp->ioc_cmd) {
 507                 default:
 508                         if ((ptmp->pt_state & PTLOCK) ||
 509                             (ptmp->pts_rdq == NULL)) {
 510                                 DBG(("got M_IOCTL but no slave\n"));
 511                                 miocnak(qp, mp, 0, EINVAL);
 512                                 PT_EXIT_READ(ptmp);
 513                                 return (0);
 514                         }
 515                         (void) putq(qp, mp);
 516                         break;
 517                 case UNLKPT:
 518                         mutex_enter(&ptmp->pt_lock);
 519                         ptmp->pt_state &= ~PTLOCK;
 520                         mutex_exit(&ptmp->pt_lock);
 521                         /*FALLTHROUGH*/
 522                 case ISPTM:
 523                         DBG(("ack the UNLKPT/ISPTM\n"));
 524                         miocack(qp, mp, 0, 0);
 525                         break;
 526                 case PTSSTTY:
 527                         mutex_enter(&ptmp->pt_lock);
 528                         ptmp->pt_state |= PTSTTY;
 529                         mutex_exit(&ptmp->pt_lock);
 530                         DBG(("ack PTSSTTY\n"));


 570                         ptop = (pt_own_t *)mp->b_cont->b_rptr;
 571 
 572                         if (!VALID_UID(ptop->pto_ruid, zone) ||
 573                             !VALID_GID(ptop->pto_rgid, zone)) {
 574                                 zone_rele(zone);
 575                                 miocnak(qp, mp, 0, EINVAL);
 576                                 break;
 577                         }
 578                         zone_rele(zone);
 579                         mutex_enter(&ptmp->pt_lock);
 580                         ptmp->pt_ruid = ptop->pto_ruid;
 581                         ptmp->pt_rgid = ptop->pto_rgid;
 582                         mutex_exit(&ptmp->pt_lock);
 583                         miocack(qp, mp, 0, 0);
 584                         break;
 585                 }
 586                 }
 587                 break;
 588 
 589         case M_READ:
 590                 /* Caused by ldterm - can not pass to slave */
 591                 freemsg(mp);
 592                 break;
 593 
 594         /*
 595          * send other messages to slave
 596          */
 597         default:
 598                 if ((ptmp->pt_state  & PTLOCK) || (ptmp->pts_rdq == NULL)) {
 599                         DBG(("got msg. but no slave\n"));
 600                         mp = mexchange(NULL, mp, 2, M_ERROR, -1);
 601                         if (mp != NULL) {
 602                                 mp->b_rptr[0] = NOERROR;
 603                                 mp->b_rptr[1] = EINVAL;
 604                                 qreply(qp, mp);
 605                         }
 606                         PT_EXIT_READ(ptmp);
 607                         return (0);
 608                 }
 609                 DBG(("put msg on master's write queue\n"));
 610                 (void) putq(qp, mp);
 611                 break;
 612         }
 613         DBG(("return from ptmwput()\n"));
 614         PT_EXIT_READ(ptmp);
 615         return (0);
 616 }
 617 
 618 
 619 /*
 620  * enable the write side of the slave. This triggers the
 621  * slave to send any messages queued on its write side to
 622  * the read side of this master.
 623  */
 624 static int
 625 ptmrsrv(queue_t *qp)
 626 {
 627         struct pt_ttys  *ptmp;
 628 
 629         DBG(("entering ptmrsrv\n"));
 630         ASSERT(qp->q_ptr);
 631 
 632         ptmp = (struct pt_ttys *)qp->q_ptr;
 633         PT_ENTER_READ(ptmp);
 634         if (ptmp->pts_rdq) {
 635                 qenable(WR(ptmp->pts_rdq));
 636         }
 637         PT_EXIT_READ(ptmp);
 638         DBG(("leaving ptmrsrv\n"));
 639         return (0);
 640 }
 641 
 642 
 643 /*
 644  * If there are messages on this queue that can be sent to
 645  * slave, send them via putnext(). Else, if queued messages
 646  * cannot be sent, leave them on this queue. If priority
 647  * messages on this queue, send them to slave no matter what.
 648  */
 649 static int
 650 ptmwsrv(queue_t *qp)
 651 {
 652         struct pt_ttys  *ptmp;
 653         mblk_t          *mp;
 654 
 655         DBG(("entering ptmwsrv\n"));
 656         ASSERT(qp->q_ptr);
 657 
 658         ptmp = (struct pt_ttys *)qp->q_ptr;
 659 
 660         if ((mp = getq(qp)) == NULL) {
 661                 /* If there are no messages there's nothing to do. */
 662                 DBG(("leaving ptmwsrv (no messages)\n"));
 663                 return (0);
 664         }
 665 
 666         PT_ENTER_READ(ptmp);
 667         if ((ptmp->pt_state  & PTLOCK) || (ptmp->pts_rdq == NULL)) {
 668                 DBG(("in master write srv proc but no slave\n"));
 669                 /*
 670                  * Free messages on the write queue and send
 671                  * NAK for any M_IOCTL type messages to wakeup
 672                  * the user process waiting for ACK/NAK from
 673                  * the ioctl invocation
 674                  */
 675                 do {
 676                         if (mp->b_datap->db_type == M_IOCTL)
 677                                 miocnak(qp, mp, 0, EINVAL);
 678                         else
 679                                 freemsg(mp);
 680                 } while ((mp = getq(qp)) != NULL);
 681                 flushq(qp, FLUSHALL);
 682 
 683                 mp = mexchange(NULL, NULL, 2, M_ERROR, -1);
 684                 if (mp != NULL) {
 685                         mp->b_rptr[0] = NOERROR;
 686                         mp->b_rptr[1] = EINVAL;
 687                         qreply(qp, mp);
 688                 }
 689                 PT_EXIT_READ(ptmp);
 690                 return (0);
 691         }
 692         /*
 693          * while there are messages on this write queue...
 694          */
 695         do {
 696                 /*
 697                  * if don't have control message and cannot put
 698                  * msg. on slave's read queue, put it back on
 699                  * this queue.
 700                  */
 701                 if (mp->b_datap->db_type <= QPCTL &&
 702                     !bcanputnext(ptmp->pts_rdq, mp->b_band)) {
 703                         DBG(("put msg. back on queue\n"));
 704                         (void) putbq(qp, mp);
 705                         break;
 706                 }
 707                 /*
 708                  * else send the message up slave's stream
 709                  */
 710                 DBG(("send message to slave\n"));
 711                 putnext(ptmp->pts_rdq, mp);
 712         } while ((mp = getq(qp)) != NULL);
 713         DBG(("leaving ptmwsrv\n"));
 714         PT_EXIT_READ(ptmp);
 715         return (0);
 716 }


   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 /*      Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T     */
  25 /*        All Rights Reserved   */
  26 
  27 /*
  28  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
  29  * Copyright 2021 Oxide Computer Company
  30  */
  31 
  32 /*
  33  * PSEUDO-TERMINAL MANAGER DRIVER (PTM)
  34  *
  35  * The pseudo-terminal subsystem simulates a terminal connection, where the
  36  * manager side represents the terminal and the subsidiary represents the user
  37  * process's special device end point.  The manager device is set up as a
  38  * cloned device where its major device number is the major for the clone
  39  * device and its minor device number is the major for the ptm driver.  There
  40  * are no nodes in the file system for manager devices.  The manager pseudo
  41  * driver is opened using the open(2) system call with /dev/ptmx as the device
  42  * parameter.  The clone open finds the next available minor device for the ptm
  43  * major device.
  44  *
  45  * A manager device is available only if it and its corresponding subsidiary
  46  * device are not already open.  When the manager device is opened, the
  47  * corresponding subsidiary device is automatically locked out.  Only one open
  48  * is allowed on a manager device.  Multiple opens are allowed on the
  49  * subsidiary device.  After both the manager and subsidiary have been opened,
  50  * the user has two file descriptors which are the end points of a full duplex
  51  * connection composed of two streams which are automatically connected at the
  52  * manager and subsidiary drivers.  The user may then push modules onto either
  53  * side of the stream pair.
  54  *
  55  * The manager and subsidiary drivers pass all messages to their adjacent
  56  * queues.  Only the M_FLUSH needs some processing.  Because the read queue of
  57  * one side is connected to the write queue of the other, the FLUSHR flag is
  58  * changed to the FLUSHW flag and vice versa.  When the manager device is
  59  * closed an M_HANGUP message is sent to the subsidiary device which will
  60  * render the device unusable.  The process on the subsidiary side gets an EIO
  61  * error when attempting to write on that stream but it will be able to read
  62  * any data remaining on the stream head read queue.  When all the data has
  63  * been read, read() returns 0 indicating that the stream can no longer be
  64  * used.  On the last close of the subsidiary device, a 0-length message is
  65  * sent to the manager device.  When the application on the manager side issues
  66  * a read() or getmsg() and 0 is returned, the user of the manager device
  67  * decides whether to issue a close() that dismantles the pseudo-terminal
  68  * subsystem.  If the manager device is not closed, the pseudo-terminal
  69  * subsystem will be available to another user to open the subsidiary device.
  70  *
  71  * If O_NONBLOCK or O_NDELAY is set, read on the manager side returns -1 with
  72  * errno set to EAGAIN if no data is available, and write returns -1 with errno
  73  * set to EAGAIN if there is internal flow control.
  74  *

  75  *
  76  * IOCTLS


  77  *
  78  *      ISPTM
  79  *              Determines whether the file descriptor is that of an open
  80  *              manager device.  Return code of zero indicates that the file
  81  *              descriptor represents a manager device.
  82  *
  83  *      UNLKPT
  84  *              Unlocks the manager and subsidiary devices.  It returns 0 on
  85  *              success. On failure, the errno is set to EINVAL indicating that
  86  *              the manager device is not open.
  87  *
  88  *      ZONEPT
  89  *              Sets the zone membership of the associated subsidiary device.
  90  *
  91  *      GRPPT
  92  *              Sets the group owner of the associated subsidiary device.
  93  *



  94  *
  95  * SYNCHRONIZATION
  96  *
  97  * All global data synchronization between ptm/pts is done via global ptms_lock
  98  * mutex which is initialized at system boot time from ptms_initspace (called
  99  * from space.c).
 100  *
 101  * Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
 102  * pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
 103  *
 104  * PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
 105  * which allow reader locks to be reacquired by the same thread (usual
 106  * reader/writer locks can't be used for that purpose since it is illegal for a
 107  * thread to acquire a lock it already holds, even as a reader). The sole
 108  * purpose of these macros is to guarantee that the peer queue will not
 109  * disappear (due to closing peer) while it is used. It is safe to use
 110  * PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
 111  * they are not real locks but reference counts).
 112  *
 113  * PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in manager/subsidiary
 114  * open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
 115  * be set to appropriate queues *after* qprocson() is called during open (to
 116  * prevent peer from accessing the queue with incomplete plumbing) and set to
 117  * NULL before qprocsoff() is called during close.
 118  *
 119  * The pt_nullmsg field is only used in open/close routines and it is also
 120  * protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
 121  * holds.
 122  *

 123  *
 124  * LOCK ORDERING
 125  *
 126  * If both ptms_lock and per-pty lock should be held, ptms_lock should always
 127  * be entered first, followed by per-pty lock.
 128  *
 129  * See ptms.h, pts.c, and ptms_conf.c for more information.
 130  */
 131 
 132 #include <sys/types.h>
 133 #include <sys/param.h>
 134 #include <sys/file.h>
 135 #include <sys/sysmacros.h>
 136 #include <sys/stream.h>
 137 #include <sys/stropts.h>
 138 #include <sys/proc.h>
 139 #include <sys/errno.h>
 140 #include <sys/debug.h>
 141 #include <sys/cmn_err.h>
 142 #include <sys/ptms.h>
 143 #include <sys/stat.h>
 144 #include <sys/strsun.h>
 145 #include <sys/systm.h>
 146 #include <sys/modctl.h>
 147 #include <sys/conf.h>
 148 #include <sys/ddi.h>
 149 #include <sys/sunddi.h>
 150 #include <sys/zone.h>
 151 
 152 #ifdef DEBUG
 153 int ptm_debug = 0;
 154 #define DBG(a)   if (ptm_debug) cmn_err(CE_NOTE, a)
 155 #else
 156 #define DBG(a)
 157 #endif
 158 
 159 static int ptmopen(queue_t *, dev_t *, int, int, cred_t *);
 160 static int ptmclose(queue_t *, int, cred_t *);
 161 static int ptmwput(queue_t *, mblk_t *);
 162 static int ptmrsrv(queue_t *);
 163 static int ptmwsrv(queue_t *);
 164 




 165 static struct module_info ptm_info = {
 166         0xdead,
 167         "ptm",
 168         0,
 169         512,
 170         512,
 171         128
 172 };
 173 
 174 static struct qinit ptmrint = {
 175         NULL,
 176         ptmrsrv,
 177         ptmopen,
 178         ptmclose,
 179         NULL,
 180         &ptm_info,
 181         NULL
 182 };
 183 
 184 static struct qinit ptmwint = {


 198         NULL
 199 };
 200 
 201 static int ptm_attach(dev_info_t *, ddi_attach_cmd_t);
 202 static int ptm_detach(dev_info_t *, ddi_detach_cmd_t);
 203 static int ptm_devinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
 204 
 205 static dev_info_t       *ptm_dip;               /* private devinfo pointer */
 206 
 207 /*
 208  * this will define (struct cb_ops cb_ptm_ops) and (struct dev_ops ptm_ops)
 209  */
 210 DDI_DEFINE_STREAM_OPS(ptm_ops, nulldev, nulldev, ptm_attach, ptm_detach,
 211     nodev, ptm_devinfo, D_MP, &ptminfo, ddi_quiesce_not_supported);
 212 
 213 /*
 214  * Module linkage information for the kernel.
 215  */
 216 
 217 static struct modldrv modldrv = {
 218         &mod_driverops,
 219         "Pseudo-Terminal Manager Driver",
 220         &ptm_ops,
 221 };
 222 
 223 static struct modlinkage modlinkage = {
 224         MODREV_1,
 225         &modldrv,
 226         NULL
 227 };
 228 
 229 int
 230 _init(void)
 231 {
 232         int rc;
 233 
 234         if ((rc = mod_install(&modlinkage)) == 0)
 235                 ptms_init();
 236         return (rc);
 237 }
 238 
 239 int
 240 _fini(void)


 262         if (ddi_create_minor_node(devi, "ptmx", S_IFCHR,
 263             0, DDI_PSEUDO, CLONE_DEV) == DDI_FAILURE) {
 264                 ddi_remove_minor_node(devi, NULL);
 265                 return (DDI_FAILURE);
 266         }
 267         ptm_dip = devi;
 268 
 269         return (DDI_SUCCESS);
 270 }
 271 
 272 static int
 273 ptm_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
 274 {
 275         if (cmd != DDI_DETACH)
 276                 return (DDI_FAILURE);
 277 
 278         ddi_remove_minor_node(devi, NULL);
 279         return (DDI_SUCCESS);
 280 }
 281 

 282 static int
 283 ptm_devinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
 284     void **result)
 285 {
 286         int error;
 287 
 288         switch (infocmd) {
 289         case DDI_INFO_DEVT2DEVINFO:
 290                 if (ptm_dip == NULL) {
 291                         error = DDI_FAILURE;
 292                 } else {
 293                         *result = (void *)ptm_dip;
 294                         error = DDI_SUCCESS;
 295                 }
 296                 break;
 297         case DDI_INFO_DEVT2INSTANCE:
 298                 *result = (void *)0;
 299                 error = DDI_SUCCESS;
 300                 break;
 301         default:
 302                 error = DDI_FAILURE;
 303         }
 304         return (error);
 305 }
 306 
 307 

 308 /*
 309  * Open a minor of the manager device. Store the write queue pointer and set
 310  * the pt_state field to (PTMOPEN | PTLOCK).
 311  * This code will work properly with both clone opens and direct opens of the
 312  * manager device.
 313  */
 314 static int
 315 ptmopen(
 316         queue_t *rqp,           /* pointer to the read side queue */
 317         dev_t   *devp,          /* pointer to stream tail's dev */
 318         int     oflag,          /* the user open(2) supplied flags */
 319         int     sflag,          /* open state flag */
 320         cred_t  *credp)         /* credentials */
 321 {
 322         struct pt_ttys  *ptmp;
 323         mblk_t          *mop;           /* ptr to a setopts message block */
 324         struct stroptions *sop;
 325         minor_t         dminor = getminor(*devp);
 326 
 327         /* Allow reopen */
 328         if (rqp->q_ptr != NULL)
 329                 return (0);
 330 
 331         if (sflag & MODOPEN)
 332                 return (ENXIO);
 333 
 334         if (!(sflag & CLONEOPEN) && dminor != 0) {
 335                 /*
 336                  * This is a direct open to specific manager device through an
 337                  * artificially created entry with specific minor in
 338                  * /dev/directory.  Such behavior is not supported.
 339                  */
 340                 return (ENXIO);
 341         }
 342 
 343         /*
 344          * The manager open requires that the subsidiary be attached before it
 345          * returns so that attempts to open the subsidiary will succeeed

 346          */
 347         if (ptms_attach_subsidiary() != 0) {
 348                 return (ENXIO);
 349         }
 350 
 351         mop = allocb(sizeof (struct stroptions), BPRI_MED);
 352         if (mop == NULL) {
 353                 DDBG("ptmopen(): mop allocation failed\n", 0);
 354                 return (ENOMEM);
 355         }
 356 
 357         if ((ptmp = pt_ttys_alloc()) == NULL) {
 358                 DDBG("ptmopen(): pty allocation failed\n", 0);
 359                 freemsg(mop);
 360                 return (ENOMEM);
 361         }
 362 
 363         dminor = ptmp->pt_minor;
 364 
 365         DDBGP("ptmopen(): allocated ptmp %p\n", (uintptr_t)ptmp);
 366         DDBG("ptmopen(): allocated minor %d\n", dminor);
 367 
 368         WR(rqp)->q_ptr = rqp->q_ptr = ptmp;
 369 
 370         qprocson(rqp);
 371 
 372         /* Allow subsidiary to send messages to manager */
 373         PT_ENTER_WRITE(ptmp);
 374         ptmp->ptm_rdq = rqp;
 375         PT_EXIT_WRITE(ptmp);
 376 
 377         /*
 378          * set up hi/lo water marks on stream head read queue
 379          * and add controlling tty if not set
 380          */
 381         mop->b_datap->db_type = M_SETOPTS;
 382         mop->b_wptr += sizeof (struct stroptions);
 383         sop = (struct stroptions *)mop->b_rptr;
 384         if (oflag & FNOCTTY)
 385                 sop->so_flags = SO_HIWAT | SO_LOWAT;
 386         else
 387                 sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY;
 388         sop->so_hiwat = _TTY_BUFSIZ;
 389         sop->so_lowat = 256;
 390         putnext(rqp, mop);
 391 
 392         /*
 393          * The input, devp, is a major device number, the output is put
 394          * into the same parm as a major,minor pair.
 395          */
 396         *devp = makedevice(getmajor(*devp), dminor);
 397 
 398         return (0);
 399 }
 400 
 401 
 402 /*
 403  * Find the address to private data identifying the subsidiary's write queue.
 404  * Send a hang-up message up the subsidiary's read queue to designate the
 405  * manager/subsidiary pair is tearing down. Uattach the manager and subsidiary
 406  * by nulling out the write queue fields in the private data structure.
 407  * Finally, unlock the manager/subsidiary pair and mark the manager as closed.
 408  */

 409 static int
 410 ptmclose(queue_t *rqp, int flag, cred_t *credp)
 411 {
 412         struct pt_ttys  *ptmp;
 413         queue_t *pts_rdq;
 414 
 415         ASSERT(rqp->q_ptr);
 416 
 417         ptmp = (struct pt_ttys *)rqp->q_ptr;
 418         PT_ENTER_READ(ptmp);
 419         if (ptmp->pts_rdq) {
 420                 pts_rdq = ptmp->pts_rdq;
 421                 if (pts_rdq->q_next) {
 422                         DBG(("send hangup message to subsidiary\n"));
 423                         (void) putnextctl(pts_rdq, M_HANGUP);
 424                 }
 425         }
 426         PT_EXIT_READ(ptmp);
 427         /*
 428          * ptm_rdq should be cleared before call to qprocsoff() to prevent pts
 429          * write procedure to attempt using ptm_rdq after qprocsoff.
 430          */
 431         PT_ENTER_WRITE(ptmp);
 432         ptmp->ptm_rdq = NULL;
 433         freemsg(ptmp->pt_nullmsg);
 434         ptmp->pt_nullmsg = NULL;
 435         /*
 436          * qenable subsidiary side write queue so that it can flush
 437          * its messages as manager's read queue is going away
 438          */
 439         if (ptmp->pts_rdq)
 440                 qenable(WR(ptmp->pts_rdq));
 441         PT_EXIT_WRITE(ptmp);
 442 
 443         qprocsoff(rqp);
 444 
 445         /* Finish the close */
 446         rqp->q_ptr = NULL;
 447         WR(rqp)->q_ptr = NULL;
 448 
 449         ptms_close(ptmp, PTMOPEN | PTLOCK);
 450 
 451         return (0);
 452 }
 453 
 454 /*
 455  * The wput procedure will only handle ioctl and flush messages.
 456  */
 457 static int
 458 ptmwput(queue_t *qp, mblk_t *mp)
 459 {
 460         struct pt_ttys  *ptmp;
 461         struct iocblk   *iocp;
 462 
 463         DBG(("entering ptmwput\n"));
 464         ASSERT(qp->q_ptr);
 465 
 466         ptmp = (struct pt_ttys *)qp->q_ptr;
 467         PT_ENTER_READ(ptmp);
 468 
 469         switch (mp->b_datap->db_type) {
 470         /*
 471          * If this is a write queue request, flush manager's write queue and
 472          * send FLUSHR up subsidiary side.  If it is a read queue request,
 473          * convert to FLUSHW and putnext().
 474          */
 475         case M_FLUSH:
 476                 {
 477                         unsigned char flush_flg = 0;
 478 
 479                         DBG(("ptm got flush request\n"));
 480                         if (*mp->b_rptr & FLUSHW) {
 481                                 DBG(("got FLUSHW, flush ptm write Q\n"));
 482                                 if (*mp->b_rptr & FLUSHBAND) {
 483                                         /*
 484                                          * if it is a FLUSHBAND, do flushband.
 485                                          */
 486                                         flushband(qp, *(mp->b_rptr + 1),
 487                                             FLUSHDATA);
 488                                 } else {
 489                                         flushq(qp, FLUSHDATA);
 490                                 }
 491                                 flush_flg = (*mp->b_rptr & ~FLUSHW) | FLUSHR;
 492                         }
 493                         if (*mp->b_rptr & FLUSHR) {
 494                                 DBG(("got FLUSHR, set FLUSHW\n"));
 495                                 flush_flg |= (*mp->b_rptr & ~FLUSHR) | FLUSHW;
 496                         }
 497                         if (flush_flg != 0 && ptmp->pts_rdq &&
 498                             !(ptmp->pt_state & PTLOCK)) {
 499                                 DBG(("putnext to pts\n"));
 500                                 *mp->b_rptr = flush_flg;
 501                                 putnext(ptmp->pts_rdq, mp);
 502                         } else {
 503                                 freemsg(mp);
 504                         }
 505                         break;
 506                 }
 507 
 508         case M_IOCTL:
 509                 iocp = (struct iocblk *)mp->b_rptr;
 510                 switch (iocp->ioc_cmd) {
 511                 default:
 512                         if ((ptmp->pt_state & PTLOCK) ||
 513                             (ptmp->pts_rdq == NULL)) {
 514                                 DBG(("got M_IOCTL but no subsidiary\n"));
 515                                 miocnak(qp, mp, 0, EINVAL);
 516                                 PT_EXIT_READ(ptmp);
 517                                 return (0);
 518                         }
 519                         (void) putq(qp, mp);
 520                         break;
 521                 case UNLKPT:
 522                         mutex_enter(&ptmp->pt_lock);
 523                         ptmp->pt_state &= ~PTLOCK;
 524                         mutex_exit(&ptmp->pt_lock);
 525                         /*FALLTHROUGH*/
 526                 case ISPTM:
 527                         DBG(("ack the UNLKPT/ISPTM\n"));
 528                         miocack(qp, mp, 0, 0);
 529                         break;
 530                 case PTSSTTY:
 531                         mutex_enter(&ptmp->pt_lock);
 532                         ptmp->pt_state |= PTSTTY;
 533                         mutex_exit(&ptmp->pt_lock);
 534                         DBG(("ack PTSSTTY\n"));


 574                         ptop = (pt_own_t *)mp->b_cont->b_rptr;
 575 
 576                         if (!VALID_UID(ptop->pto_ruid, zone) ||
 577                             !VALID_GID(ptop->pto_rgid, zone)) {
 578                                 zone_rele(zone);
 579                                 miocnak(qp, mp, 0, EINVAL);
 580                                 break;
 581                         }
 582                         zone_rele(zone);
 583                         mutex_enter(&ptmp->pt_lock);
 584                         ptmp->pt_ruid = ptop->pto_ruid;
 585                         ptmp->pt_rgid = ptop->pto_rgid;
 586                         mutex_exit(&ptmp->pt_lock);
 587                         miocack(qp, mp, 0, 0);
 588                         break;
 589                 }
 590                 }
 591                 break;
 592 
 593         case M_READ:
 594                 /* Caused by ldterm - can not pass to subsidiary */
 595                 freemsg(mp);
 596                 break;
 597 
 598         /*
 599          * Send other messages to the subsidiary:
 600          */
 601         default:
 602                 if ((ptmp->pt_state & PTLOCK) || (ptmp->pts_rdq == NULL)) {
 603                         DBG(("got msg. but no subsidiary\n"));
 604                         mp = mexchange(NULL, mp, 2, M_ERROR, -1);
 605                         if (mp != NULL) {
 606                                 mp->b_rptr[0] = NOERROR;
 607                                 mp->b_rptr[1] = EINVAL;
 608                                 qreply(qp, mp);
 609                         }
 610                         PT_EXIT_READ(ptmp);
 611                         return (0);
 612                 }
 613                 DBG(("put msg on manager's write queue\n"));
 614                 (void) putq(qp, mp);
 615                 break;
 616         }
 617         DBG(("return from ptmwput()\n"));
 618         PT_EXIT_READ(ptmp);
 619         return (0);
 620 }
 621 
 622 
 623 /*
 624  * Enable the write side of the subsidiary.  This triggers the subsidiary to
 625  * send any messages queued on its write side to the read side of this manager.

 626  */
 627 static int
 628 ptmrsrv(queue_t *qp)
 629 {
 630         struct pt_ttys  *ptmp;
 631 
 632         DBG(("entering ptmrsrv\n"));
 633         ASSERT(qp->q_ptr);
 634 
 635         ptmp = (struct pt_ttys *)qp->q_ptr;
 636         PT_ENTER_READ(ptmp);
 637         if (ptmp->pts_rdq) {
 638                 qenable(WR(ptmp->pts_rdq));
 639         }
 640         PT_EXIT_READ(ptmp);
 641         DBG(("leaving ptmrsrv\n"));
 642         return (0);
 643 }
 644 
 645 
 646 /*
 647  * If there are messages on this queue that can be sent to subsidiary, send
 648  * them via putnext().  Otherwise, if queued messages cannot be sent, leave
 649  * them on this queue.  If priority messages on this queue, send them to the
 650  * subsidiary no matter what.
 651  */
 652 static int
 653 ptmwsrv(queue_t *qp)
 654 {
 655         struct pt_ttys  *ptmp;
 656         mblk_t          *mp;
 657 
 658         DBG(("entering ptmwsrv\n"));
 659         ASSERT(qp->q_ptr);
 660 
 661         ptmp = (struct pt_ttys *)qp->q_ptr;
 662 
 663         if ((mp = getq(qp)) == NULL) {
 664                 /* If there are no messages there's nothing to do. */
 665                 DBG(("leaving ptmwsrv (no messages)\n"));
 666                 return (0);
 667         }
 668 
 669         PT_ENTER_READ(ptmp);
 670         if ((ptmp->pt_state  & PTLOCK) || (ptmp->pts_rdq == NULL)) {
 671                 DBG(("in manager write srv proc but no subsidiary\n"));
 672                 /*
 673                  * Free messages on the write queue and send
 674                  * NAK for any M_IOCTL type messages to wakeup
 675                  * the user process waiting for ACK/NAK from
 676                  * the ioctl invocation
 677                  */
 678                 do {
 679                         if (mp->b_datap->db_type == M_IOCTL)
 680                                 miocnak(qp, mp, 0, EINVAL);
 681                         else
 682                                 freemsg(mp);
 683                 } while ((mp = getq(qp)) != NULL);
 684                 flushq(qp, FLUSHALL);
 685 
 686                 mp = mexchange(NULL, NULL, 2, M_ERROR, -1);
 687                 if (mp != NULL) {
 688                         mp->b_rptr[0] = NOERROR;
 689                         mp->b_rptr[1] = EINVAL;
 690                         qreply(qp, mp);
 691                 }
 692                 PT_EXIT_READ(ptmp);
 693                 return (0);
 694         }
 695         /*
 696          * While there are messages on this write queue...
 697          */
 698         do {
 699                 /*
 700                  * If this is not a control message, and we cannot put messages
 701                  * on the subsidiary's read queue, put it back on this queue.

 702                  */
 703                 if (mp->b_datap->db_type <= QPCTL &&
 704                     !bcanputnext(ptmp->pts_rdq, mp->b_band)) {
 705                         DBG(("put msg. back on queue\n"));
 706                         (void) putbq(qp, mp);
 707                         break;
 708                 }
 709                 /*
 710                  * Otherwise send the message up subsidiary's stream
 711                  */
 712                 DBG(("send message to subsidiary\n"));
 713                 putnext(ptmp->pts_rdq, mp);
 714         } while ((mp = getq(qp)) != NULL);
 715         DBG(("leaving ptmwsrv\n"));
 716         PT_EXIT_READ(ptmp);
 717         return (0);
 718 }