1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License, Version 1.0 only
   6  * (the "License").  You may not use this file except in compliance
   7  * with the License.
   8  *
   9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
  10  * or http://www.opensolaris.org/os/licensing.
  11  * See the License for the specific language governing permissions
  12  * and limitations under the License.
  13  *
  14  * When distributing Covered Code, include this CDDL HEADER in each
  15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  16  * If applicable, add the following below this CDDL HEADER, with the
  17  * fields enclosed by brackets "[]" replaced with your own identifying
  18  * information: Portions Copyright [yyyy] [name of copyright owner]
  19  *
  20  * CDDL HEADER END
  21  */
  22 /*
  23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  */
  26 
  27 #pragma ident   "%Z%%M% %I%     %E% SMI"
  28 
  29 #include <stdio.h>
  30 #include <stdlib.h>
  31 #include <string.h>
  32 #include <errno.h>
  33 #include <signal.h>
  34 #include <locale.h>
  35 
  36 #include <unistd.h>
  37 #include <termios.h>
  38 
  39 #ifdef HAVE_SELECT
  40 #ifdef HAVE_SYS_SELECT_H
  41 #include <sys/select.h>
  42 #endif
  43 #endif
  44 
  45 #include <fcntl.h>
  46 #include <sys/time.h>
  47 #include <sys/types.h>
  48 #include <sys/wait.h>
  49 #include <dirent.h>
  50 
  51 #if HAVE_SYSV_PTY
  52 #include <stropts.h>    /* System-V stream I/O */
  53 char *ptsname(int fd);
  54 int grantpt(int fd);
  55 int unlockpt(int fd);
  56 #endif
  57 
  58 #include "libtecla.h"
  59 
  60 /*
  61  * Pseudo-terminal devices are found in the following directory.
  62  */
  63 #define PTY_DEV_DIR "/dev/"
  64 
  65 /*
  66  * Pseudo-terminal controller device file names start with the following
  67  * prefix.
  68  */
  69 #define PTY_CNTRL "pty"
  70 
  71 /*
  72  * Pseudo-terminal slave device file names start with the following
  73  * prefix.
  74  */
  75 #define PTY_SLAVE "tty"
  76 
  77 /*
  78  * Specify the maximum suffix length for the control and slave device
  79  * names.
  80  */
  81 #define PTY_MAX_SUFFIX 10
  82 
  83 /*
  84  * Set the maximum length of the master and slave terminal device filenames,
  85  * including space for a terminating '\0'.
  86  */
  87 #define PTY_MAX_NAME (sizeof(PTY_DEV_DIR)-1 + \
  88                       (sizeof(PTY_SLAVE) > sizeof(PTY_CNTRL) ? \
  89                        sizeof(PTY_SLAVE) : sizeof(PTY_CNTRL))-1 \
  90                       + PTY_MAX_SUFFIX + 1)
  91 /*
  92  * Set the maximum length of an input line.
  93  */
  94 #define PTY_MAX_LINE 4096
  95 
  96 /*
  97  * Set the size of the buffer used for accumulating bytes written by the
  98  * user's terminal to its stdout.
  99  */
 100 #define PTY_MAX_READ 1000
 101 
 102 /*
 103  * Set the amount of memory used to record history.
 104  */
 105 #define PTY_HIST_SIZE 10000
 106 
 107 /*
 108  * Set the timeout delay used to check for quickly arriving
 109  * sequential output from the application.
 110  */
 111 #define PTY_READ_TIMEOUT 100000    /* micro-seconds */
 112 
 113 static int pty_open_master(const char *prog, int *cntrl, char *slave_name);
 114 static int pty_open_slave(const char *prog, char *slave_name);
 115 static int pty_child(const char *prog, int slave, char *argv[]);
 116 static int pty_parent(const char *prog, int cntrl);
 117 static int pty_stop_parent(int waserr, int cntrl, GetLine *gl, char *rbuff);
 118 static GL_FD_EVENT_FN(pty_read_from_program);
 119 static int pty_write_to_fd(int fd, const char *string, int n);
 120 static void pty_child_exited(int sig);
 121 static int pty_master_readable(int fd, long usec);
 122 
 123 /*.......................................................................
 124  * Run a program with enhanced terminal editing facilities.
 125  *
 126  * Usage:
 127  *  enhance program [args...]
 128  */
 129 int main(int argc, char *argv[])
 130 {
 131   int cntrl = -1;  /* The fd of the pseudo-terminal controller device */
 132   int slave = -1;  /* The fd of the pseudo-terminal slave device */
 133   pid_t pid;       /* The return value of fork() */
 134   int status;      /* The return statuses of the parent and child functions */
 135   char slave_name[PTY_MAX_NAME]; /* The filename of the slave end of the */
 136                                  /*  pseudo-terminal. */
 137   char *prog;      /* The name of the program (ie. argv[0]) */
 138 /*
 139  * Check the arguments.
 140  */
 141   if(argc < 2) {
 142     fprintf(stderr, "Usage: %s <program> [arguments...]\n", argv[0]);
 143     return 1;
 144   };
 145 /*
 146  * Get the name of the program.
 147  */
 148   prog = argv[0];
 149 /*
 150  * If the user has the LC_CTYPE or LC_ALL environment variables set,
 151  * enable display of characters corresponding to the specified locale.
 152  */
 153   (void) setlocale(LC_CTYPE, "");
 154 /*
 155  * If the program is taking its input from a pipe or a file, or
 156  * sending its output to something other than a terminal, run the
 157  * program without tecla.
 158  */
 159   if(!isatty(STDIN_FILENO) || !isatty(STDOUT_FILENO)) {
 160     if(execvp(argv[1], argv + 1) < 0) {
 161       fprintf(stderr, "%s: Unable to execute %s (%s).\n", prog, argv[1],
 162               strerror(errno));
 163       fflush(stderr);
 164       _exit(1);
 165     };
 166   };
 167 /*
 168  * Open the master side of a pseudo-terminal pair, and return
 169  * the corresponding file descriptor and the filename of the
 170  * slave end of the pseudo-terminal.
 171  */
 172   if(pty_open_master(prog, &cntrl, slave_name))
 173     return 1;
 174 /*
 175  * Set up a signal handler to watch for the child process exiting.
 176  */
 177   signal(SIGCHLD, pty_child_exited);
 178 /*
 179  * The above signal handler sends the parent process a SIGINT signal.
 180  * This signal is caught by gl_get_line(), which resets the terminal
 181  * settings, and if the application signal handler for this signal
 182  * doesn't abort the process, gl_get_line() returns NULL with errno
 183  * set to EINTR. Arrange to ignore the signal, so that gl_get_line()
 184  * returns and we have a chance to cleanup.
 185  */
 186   signal(SIGINT, SIG_IGN);
 187 /*
 188  * We will read user input in one process, and run the user's program
 189  * in a child process.
 190  */
 191   pid = fork();
 192   if(pid < 0) {
 193     fprintf(stderr, "%s: Unable to fork child process (%s).\n", prog,
 194             strerror(errno));
 195     return 1;
 196   };
 197 /*
 198  * Are we the parent?
 199  */
 200   if(pid!=0) {
 201     status = pty_parent(prog, cntrl);
 202     close(cntrl);
 203   } else {
 204     close(cntrl); /* The child doesn't use the slave device */
 205     signal(SIGCHLD, pty_child_exited);
 206     if((slave = pty_open_slave(prog, slave_name)) >= 0) {
 207       status = pty_child(prog, slave, argv + 1);
 208       close(slave);
 209     } else {
 210       status = 1;
 211     };
 212   };
 213   return status;
 214 }
 215 
 216 /*.......................................................................
 217  * Open the master side of a pseudo-terminal pair, and return
 218  * the corresponding file descriptor and the filename of the
 219  * slave end of the pseudo-terminal.
 220  *
 221  * Input/Output:
 222  *  prog  const char *  The name of this program.
 223  *  cntrl        int *  The file descriptor of the pseudo-terminal
 224  *                      controller device will be assigned tp *cntrl.
 225  *  slave_name  char *  The file-name of the pseudo-terminal slave device
 226  *                      will be recorded in slave_name[], which must have
 227  *                      at least PTY_MAX_NAME elements.
 228  * Output:
 229  *  return       int    0 - OK.
 230  *                      1 - Error.
 231  */
 232 static int pty_open_master(const char *prog, int *cntrl, char *slave_name)
 233 {
 234   char master_name[PTY_MAX_NAME]; /* The filename of the master device */
 235   DIR *dir;                       /* The directory iterator */
 236   struct dirent *file;            /* A file in "/dev" */
 237 /*
 238  * Mark the controller device as not opened yet.
 239  */
 240   *cntrl = -1;
 241 /*
 242  * On systems with the Sys-V pseudo-terminal interface, we don't
 243  * have to search for a free master terminal. We just open /dev/ptmx,
 244  * and if there is a free master terminal device, we are given a file
 245  * descriptor connected to it.
 246  */
 247 #if HAVE_SYSV_PTY
 248   *cntrl = open("/dev/ptmx", O_RDWR);
 249   if(*cntrl >= 0) {
 250 /*
 251  * Get the filename of the slave side of the pseudo-terminal.
 252  */
 253     char *name = ptsname(*cntrl);
 254     if(name) {
 255       if(strlen(name)+1 > PTY_MAX_NAME) {
 256         fprintf(stderr, "%s: Slave pty filename too long.\n", prog);
 257         return 1;
 258       };
 259       strlcpy(slave_name, name, PTY_MAX_NAME);
 260 /*
 261  * If unable to get the slave name, discard the controller file descriptor,
 262  * ready to try a search instead.
 263  */
 264     } else {
 265       close(*cntrl);
 266       *cntrl = -1;
 267     };
 268   } else {
 269 #endif
 270 /*
 271  * On systems without /dev/ptmx, or if opening /dev/ptmx failed,
 272  * we open one master terminal after another, until one that isn't
 273  * in use by another program is found.
 274  *
 275  * Open the devices directory.
 276  */
 277     dir = opendir(PTY_DEV_DIR);
 278     if(!dir) {
 279       fprintf(stderr, "%s: Couldn't open %s (%s)\n", prog, PTY_DEV_DIR,
 280               strerror(errno));
 281       return 1;
 282     };
 283 /*
 284  * Look for pseudo-terminal controller device files in the devices
 285  * directory.
 286  */
 287     while(*cntrl < 0 && (file = readdir(dir))) {
 288       if(strncmp(file->d_name, PTY_CNTRL, sizeof(PTY_CNTRL)-1) == 0) {
 289 /*
 290  * Get the common extension of the control and slave filenames.
 291  */
 292         const char *ext = file->d_name + sizeof(PTY_CNTRL)-1;
 293         if(strlen(ext) > PTY_MAX_SUFFIX)
 294           continue;
 295 /*
 296  * Attempt to open the control file.
 297  */
 298         strlcpy(master_name, PTY_DEV_DIR, sizeof(master_name));
 299         strlcat(master_name, PTY_CNTRL, sizeof(master_name));
 300         strlcat(master_name, ext, sizeof(master_name));
 301         *cntrl = open(master_name, O_RDWR);
 302         if(*cntrl < 0)
 303           continue;
 304 /*
 305  * Attempt to open the matching slave file.
 306  */
 307         strlcpy(slave_name, PTY_DEV_DIR, PTY_MAX_NAME);
 308         strlcat(slave_name, PTY_SLAVE, PTY_MAX_NAME);
 309         strlcat(slave_name, ext, PTY_MAX_NAME);
 310       };
 311     };
 312     closedir(dir);
 313 #if HAVE_SYSV_PTY
 314   };
 315 #endif
 316 /*
 317  * Did we fail to find a pseudo-terminal pair that we could open?
 318  */
 319   if(*cntrl < 0) {
 320     fprintf(stderr, "%s: Unable to find a free pseudo-terminal.\n", prog);
 321     return 1;
 322   };
 323 /*
 324  * System V systems require the program that opens the master to
 325  * grant access to the slave side of the pseudo-terminal.
 326  */
 327 #ifdef HAVE_SYSV_PTY
 328   if(grantpt(*cntrl) < 0 ||
 329      unlockpt(*cntrl) < 0) {
 330     fprintf(stderr, "%s: Unable to unlock terminal (%s).\n", prog,
 331             strerror(errno));
 332     return 1;
 333   };
 334 #endif
 335 /*
 336  * Success.
 337  */
 338   return 0;
 339 }
 340 
 341 /*.......................................................................
 342  * Open the slave end of a pseudo-terminal.
 343  *
 344  * Input:
 345  *  prog   const char *  The name of this program.
 346  *  slave_name   char *  The filename of the slave device.
 347  * Output:
 348  *  return        int    The file descriptor of the successfully opened
 349  *                       slave device, or < 0 on error.
 350  */
 351 static int pty_open_slave(const char *prog, char *slave_name)
 352 {
 353   int fd;  /* The file descriptor of the slave device */
 354 /*
 355  * Place the process in its own process group. In system-V based
 356  * OS's, this ensures that when the pseudo-terminal is opened, it
 357  * becomes the controlling terminal of the process.
 358  */
 359   if(setsid() < 0) {
 360     fprintf(stderr, "%s: Unable to form new process group (%s).\n", prog,
 361             strerror(errno));
 362     return -1;
 363   };
 364 /*
 365  * Attempt to open the specified device.
 366  */
 367   fd = open(slave_name, O_RDWR);
 368   if(fd < 0) {
 369     fprintf(stderr, "%s: Unable to open pseudo-terminal slave device (%s).\n",
 370             prog, strerror(errno));
 371     return -1;
 372   };
 373 /*
 374  * On system-V streams based systems, we need to push the stream modules
 375  * that implement pseudo-terminal and termio interfaces. At least on
 376  * Solaris, which pushes these automatically when a slave is opened,
 377  * this is redundant, so ignore errors when pushing the modules.
 378  */
 379 #if HAVE_SYSV_PTY
 380   (void) ioctl(fd, I_PUSH, "ptem");
 381   (void) ioctl(fd, I_PUSH, "ldterm");
 382 /*
 383  * On BSD based systems other than SunOS 4.x, the following makes the
 384  * pseudo-terminal the controlling terminal of the child process.
 385  * According to the pseudo-terminal example code in Steven's
 386  * Advanced programming in the unix environment, the !defined(CIBAUD)
 387  * part of the clause prevents this from being used under SunOS. Since
 388  * I only have his code with me, and won't have access to the book,
 389  * I don't know why this is necessary.
 390  */
 391 #elif defined(TIOCSCTTY) && !defined(CIBAUD)
 392   if(ioctl(fd, TIOCSCTTY, (char *) 0) < 0) {
 393     fprintf(stderr, "%s: Unable to establish controlling terminal (%s).\n",
 394             prog, strerror(errno));
 395     close(fd);
 396     return -1;
 397   };
 398 #endif
 399   return fd;
 400 }
 401 
 402 /*.......................................................................
 403  * Read input from the controlling terminal of the program, using
 404  * gl_get_line(), and feed it to the user's program running in a child
 405  * process, via the controller side of the pseudo-terminal. Also pass
 406  * data received from the user's program via the conroller end of
 407  * the pseudo-terminal, to stdout.
 408  *
 409  * Input:
 410  *  prog  const char *  The name of this program.
 411  *  cntrl        int    The file descriptor of the controller end of the
 412  *                      pseudo-terminal.
 413  * Output:
 414  *  return       int    0 - OK.
 415  *                      1 - Error.
 416  */
 417 static int pty_parent(const char *prog, int cntrl)
 418 {
 419   GetLine *gl = NULL;  /* The gl_get_line() resource object */
 420   char *line;          /* An input line read from the user */
 421   char *rbuff=NULL;    /* A buffer for reading from the pseudo terminal */
 422 /*
 423  * Allocate the gl_get_line() resource object.
 424  */
 425   gl = new_GetLine(PTY_MAX_LINE, PTY_HIST_SIZE);
 426   if(!gl)
 427     return pty_stop_parent(1, cntrl, gl, rbuff);
 428 /*
 429  * Allocate a buffer to use to accumulate bytes read from the
 430  * pseudo-terminal.
 431  */
 432   rbuff = (char *) malloc(PTY_MAX_READ+1);
 433   if(!rbuff)
 434     return pty_stop_parent(1, cntrl, gl, rbuff);
 435   rbuff[0] = '\0';
 436 /*
 437  * Register an event handler to watch for data appearing from the
 438  * user's program on the controller end of the pseudo terminal.
 439  */
 440   if(gl_watch_fd(gl, cntrl, GLFD_READ, pty_read_from_program, rbuff))
 441     return pty_stop_parent(1, cntrl, gl, rbuff);
 442 /*
 443  * Read input lines from the user and pass them on to the user's program,
 444  * by writing to the controller end of the pseudo-terminal.
 445  */
 446   while((line=gl_get_line(gl, rbuff, NULL, 0))) {
 447     if(pty_write_to_fd(cntrl, line, strlen(line)))
 448        return pty_stop_parent(1, cntrl, gl, rbuff);
 449     rbuff[0] = '\0';
 450   };
 451   return pty_stop_parent(0, cntrl, gl, rbuff);
 452 }
 453 
 454 /*.......................................................................
 455  * This is a private return function of pty_parent(), used to release
 456  * dynamically allocated resources, close the controller end of the
 457  * pseudo-terminal, and wait for the child to exit. It returns the
 458  * exit status of the child process, unless the caller reports an
 459  * error itself, in which case the caller's error status is returned.
 460  *
 461  * Input:
 462  *  waserr   int    True if the caller is calling this function because
 463  *                  an error occured.
 464  *  cntrl    int    The file descriptor of the controller end of the
 465  *                  pseudo-terminal.
 466  *  gl   GetLine *  The resource object of gl_get_line().
 467  *  rbuff   char *  The buffer used to accumulate bytes read from
 468  *                  the pseudo-terminal.
 469  * Output:
 470  *  return  int    The desired exit status of the program.
 471  */
 472 static int pty_stop_parent(int waserr, int cntrl, GetLine *gl, char *rbuff)
 473 {
 474   int status;  /* The return status of the child process */
 475 /*
 476  * Close the controller end of the terminal.
 477  */
 478   close(cntrl);
 479 /*
 480  * Delete the resource object.
 481  */
 482   gl = del_GetLine(gl);
 483 /*
 484  * Delete the read buffer.
 485  */
 486   if(rbuff)
 487     free(rbuff);
 488 /*
 489  * Wait for the user's program to end.
 490  */
 491   (void) wait(&status);
 492 /*
 493  * Return either our error status, or the return status of the child
 494  * program.
 495  */
 496   return waserr ? 1 : status;
 497 }
 498 
 499 /*.......................................................................
 500  * Run the user's program, with its stdin and stdout connected to the
 501  * slave end of the psuedo-terminal.
 502  *
 503  * Input:
 504  *  prog  const char *   The name of this program.
 505  *  slave        int     The file descriptor of the slave end of the
 506  *                       pseudo terminal.
 507  *  argv        char *[] The argument vector to pass to the user's program,
 508  *                       where argv[0] is the name of the user's program,
 509  *                       and the last argument is followed by a pointer
 510  *                       to NULL.
 511  * Output:
 512  *  return   int         If this function returns at all, an error must
 513  *                       have occured when trying to overlay the process
 514  *                       with the user's program. In this case 1 is
 515  *                       returned.
 516  */
 517 static int pty_child(const char *prog, int slave, char *argv[])
 518 {
 519   struct termios attr; /* The terminal attributes */
 520 /*
 521  * We need to stop the pseudo-terminal from echoing everything that we send it.
 522  */
 523   if(tcgetattr(slave, &attr)) {
 524     fprintf(stderr, "%s: Can't get pseudo-terminal attributes (%s).\n", prog,
 525             strerror(errno));
 526     return 1;
 527   };
 528   attr.c_lflag &= ~(ECHO);
 529   while(tcsetattr(slave, TCSADRAIN, &attr)) {
 530     if(errno != EINTR) {
 531       fprintf(stderr, "%s: tcsetattr error: %s\n", prog, strerror(errno));
 532       return 1;
 533     };
 534   };
 535 /*
 536  * Arrange for stdin, stdout and stderr to be connected to the slave device,
 537  * ignoring errors that imply that either stdin or stdout is closed.
 538  */
 539   while(dup2(slave, STDIN_FILENO) < 0 && errno==EINTR)
 540     ;
 541   while(dup2(slave, STDOUT_FILENO) < 0 && errno==EINTR)
 542     ;
 543   while(dup2(slave, STDERR_FILENO) < 0 && errno==EINTR)
 544     ;
 545 /*
 546  * Run the user's program.
 547  */
 548   if(execvp(argv[0], argv) < 0) {
 549     fprintf(stderr, "%s: Unable to execute %s (%s).\n", prog, argv[0],
 550             strerror(errno));
 551     fflush(stderr);
 552     _exit(1);
 553   };
 554   return 0;  /* This should never be reached */
 555 }
 556 
 557 /*.......................................................................
 558  * This is the event-handler that is called by gl_get_line() whenever
 559  * there is tet waiting to be read from the user's program, via the
 560  * controller end of the pseudo-terminal. See libtecla.h for details
 561  * about its arguments.
 562  */
 563 static GL_FD_EVENT_FN(pty_read_from_program)
 564 {
 565   char *nlptr;   /* A pointer to the last newline in the accumulated string */
 566   char *crptr;   /* A pointer to the last '\r' in the accumulated string */
 567   char *nextp;   /* A pointer to the next unprocessed character */
 568 /*
 569  * Get the read buffer in which we are accumulating a line to be
 570  * forwarded to stdout.
 571  */
 572   char *rbuff = (char *) data;
 573 /*
 574  * New data may arrive while we are processing the current read, and
 575  * it is more efficient to display this here than to keep returning to
 576  * gl_get_line() and have it display the latest prefix as a prompt,
 577  * followed by the current input line, so we loop, delaying a bit at
 578  * the end of each iteration to check for more data arriving from
 579  * the application, before finally returning to gl_get_line() when
 580  * no more input is available.
 581  */
 582   do {
 583 /*
 584  * Get the current length of the output string.
 585  */
 586     int len = strlen(rbuff);
 587 /*
 588  * Read the text from the program.
 589  */
 590     int nnew = read(fd, rbuff + len, PTY_MAX_READ - len);
 591     if(nnew < 0)
 592       return GLFD_ABORT;
 593     len += nnew;
 594 /*
 595  * Nul terminate the accumulated string.
 596  */
 597     rbuff[len] = '\0';
 598 /*
 599  * Find the last newline and last carriage return in the buffer, if any.
 600  */
 601     nlptr = strrchr(rbuff, '\n');
 602     crptr = strrchr(rbuff, '\r');
 603 /*
 604  * We want to output up to just before the last newline or carriage
 605  * return. If there are no newlines of carriage returns in the line,
 606  * and the buffer is full, then we should output the whole line. In
 607  * all cases a new output line will be started after the latest text
 608  * has been output. The intention is to leave any incomplete line
 609  * in the buffer, for (perhaps temporary) use as the current prompt.
 610  */
 611     if(nlptr) {
 612       nextp = crptr && crptr < nlptr ? crptr : nlptr;
 613     } else if(crptr) {
 614       nextp = crptr;
 615     } else if(len >= PTY_MAX_READ) {
 616       nextp = rbuff + len;
 617     } else {
 618       nextp = NULL;
 619     };
 620 /*
 621  * Do we have any text to output yet?
 622  */
 623     if(nextp) {
 624 /*
 625  * If there was already some text in rbuff before this function
 626  * was called, then it will have been used as a prompt. Arrange
 627  * to rewrite this prefix, plus the new suffix, by moving back to
 628  * the start of the line.
 629  */
 630       if(len > 0)
 631         (void) pty_write_to_fd(STDOUT_FILENO, "\r", 1);
 632 /*
 633  * Write everything up to the last newline to stdout.
 634  */
 635       (void) pty_write_to_fd(STDOUT_FILENO, rbuff, nextp - rbuff);
 636 /*
 637  * Start a new line.
 638  */
 639       (void) pty_write_to_fd(STDOUT_FILENO, "\r\n", 2);
 640 /*
 641  * Skip trailing carriage returns and newlines.
 642  */
 643       while(*nextp=='\n' || *nextp=='\r')
 644         nextp++;
 645 /*
 646  * Move any unwritten text following the newline, to the start of the
 647  * buffer.
 648  */
 649       memmove(rbuff, nextp, len - (nextp - rbuff) + 1);
 650     };
 651   } while(pty_master_readable(fd, PTY_READ_TIMEOUT));
 652 /*
 653  * Make the incomplete line in the output buffer the current prompt.
 654  */
 655   gl_replace_prompt(gl, rbuff);
 656   return GLFD_REFRESH;
 657 }
 658 
 659 /*.......................................................................
 660  * Write a given string to a specified file descriptor.
 661  *
 662  * Input:
 663  *  fd             int     The file descriptor to write to.
 664  *  string  const char *   The string to write (of at least 'n' characters).
 665  *  n              int     The number of characters to write.
 666  * Output:
 667  *  return         int     0 - OK.
 668  *                         1 - Error.
 669  */
 670 static int pty_write_to_fd(int fd, const char *string, int n)
 671 {
 672   int ndone = 0;  /* The number of characters written so far */
 673 /*
 674  * Do as many writes as are needed to write the whole string.
 675  */
 676   while(ndone < n) {
 677     int nnew = write(fd, string + ndone, n - ndone);
 678     if(nnew > 0)
 679       ndone += nnew;
 680     else if(errno != EINTR)
 681       return 1;
 682   };
 683   return 0;
 684 }
 685 
 686 /*.......................................................................
 687  * This is the signal handler that is called when the child process
 688  * that is running the user's program exits for any reason. It closes
 689  * the slave end of the terminal, so that gl_get_line() in the parent
 690  * process sees an end of file.
 691  */
 692 static void pty_child_exited(int sig)
 693 {
 694   raise(SIGINT);
 695 }
 696 
 697 /*.......................................................................
 698  * Return non-zero after a given amount of time if there is data waiting
 699  * to be read from a given file descriptor.
 700  *
 701  * Input:
 702  *  fd        int  The descriptor to watch.
 703  *  usec     long  The number of micro-seconds to wait for input to
 704  *                 arrive before giving up.
 705  * Output:
 706  *  return    int  0 - No data is waiting to be read (or select isn't
 707  *                     available).
 708  *                 1 - Data is waiting to be read.
 709  */
 710 static int pty_master_readable(int fd, long usec)
 711 {
 712 #if HAVE_SELECT
 713   fd_set rfds;             /* The set of file descriptors to check */
 714   struct timeval timeout;  /* The timeout */
 715   FD_ZERO(&rfds);
 716   FD_SET(fd, &rfds);
 717   timeout.tv_sec = 0;
 718   timeout.tv_usec = usec;
 719   return select(fd+1, &rfds, NULL, NULL, &timeout) == 1;
 720 #else
 721   return 0;
 722 #endif
 723 }